搜索

x
中国物理学会期刊

近α型高温钛合金起燃机理

CSTR: 32037.14.aps.73.20240003

Ignition mechanism of near α high temperature titanium alloy

CSTR: 32037.14.aps.73.20240003
PDF
HTML
导出引用
  • 采用激光氧浓度实验方法, 研究激光功率和氧浓度对近α型高温钛合金(TA19合金)燃烧状态的影响, 发现合金的起燃温度随激光功率和氧浓度的增加而降低, 在200—325 W的激光功率以及21%—60%的氧体积浓度条件下, TA19合金的起燃温度为1527—1595 ℃, 低于合金熔点. 通过组织表征揭示保护性氧化层的失效形式, 并结合氧化层应力失效模型分析起燃机理: 1520 ℃以上TiO的高蒸气压特性导致表层TiO2下方形成孔隙缺陷, 加速TiO2层的热应力失效; 且起燃时需要同时满足临界温度条件和瞬时温度变化率条件. 在此基础上, 将保护性氧化层失效机理与能量方程结合以构建起燃模型; 根据实验数据拟合计算得到TA19合金在起燃阶段的反应激活能约为280 kJ/mol, 并得出起燃温度随激光功率和氧浓度变化的函数关系为 1.2 \times 10^10\mathrmexp\Big(\dfrac - 280000RT_\textig\Big) c^\frac12 + 0.52P_\textL - 315 = 0 . 该结果对航空发动机复杂气流条件下的阻燃性能研究及其他类型钛合金的起燃温度预测提供理论参考.

     

    The risk of titanium fire increases significantly with the development of future aero-engine, however, the burning mechanisms of titanium alloys remain uncertain. Therefore, the ignition behavior and mechanism of near α high-temperature titanium alloy are studied in this work by an integrated experiment method, including laser-oxygen concentration ignition method, infrared temperature measurement and observation of molten metal by high-speed camera. Based on this, the ignition boundary curve is determined and the ignition temperature of the alloy is found to decrease from 1595 to 1527 ℃ with the laser power increasing from 200 to 325 W and oxygen concentration increasing from 21% to 60%. The ignition microstructure is characterized by FIB and TEM to study the evolution of reaction products. Pores are found to form beneath the TiO2 surface layer, which can be attributed to the instablity of TiO. The failure mechanism of protective oxide layer is further analyzed according to the thermal stress caused oxide layer damage model. When the temperature approaches the ignition temperature, which is below the melting point, the high vapor pressure of TiO leads to the formation of porous defects beneath the TiO2 surface, thus accelerating the fracture and failure of the TiO2 layer under thermal stress. It is revealed that critical conditions of temperature and instantaneous temperature change rate are needed to realize ignition. Based on this, an ignition model is further constructed to discuss the relationship among ignition temperature, laser power and oxgyen concentration. According to the experimental data fitting, the reaction activation energy of TA19 alloy during the ignition stage is calculated to be about 280 kJ/mol, and the function for calculating ignition temperature is given as follows: 1.2 \times 10^10\mathrme^\frac - 280000RT_\textigc^\frac12 + 0.52P_\mathrmL - 315 = 0 . This provides a theoretical reference for predicting the ignition temperatures of near α high temperature titanium alloy and other types of titanium alloys under complex airflow conditions in aircraft engines.

     

    目录

    /

    返回文章
    返回