搜索

x
中国物理学会期刊

n型Bi2–x SbxTe3–ySey基化合物的缺陷结构调控与电热输运性能

CSTR: 32037.14.aps.73.20240098

Defect structure regulation and thermoelectric transfer performance in n-type Bi2–x SbxTe3–ySey-based compounds

CSTR: 32037.14.aps.73.20240098
PDF
HTML
导出引用
  • Bi2Te3基化合物是目前室温附近性能最好的热电材料, 但其存在着大量复杂的缺陷结构, 缺陷工程是调控材料热电性能的核心手段, 因此理解和有效地调控缺陷形态和浓度是获得高性能Bi2Te3基热电材料的关键. 本文系统地研究了四元n型Bi2–x SbxTe3–ySey基化合物的缺陷演化过程及其对热电输运性能的影响规律. Sb和Se的固溶引入的带电伴生结构缺陷使得材料的载流子浓度发生了巨大变化, 在Bi2–x SbxTe2.994Cl0.006样品中, Sb的固溶降低了反位缺陷\mathrmS\mathrmb_\mathrmT\mathrme_2形成能, 诱导产生了反位缺陷 \mathrmS\mathrmb_\mathrmT\mathrme_2 , 使得少数载流子空穴浓度从2.09×1016 cm–3增加至3.99×1017 cm–3, 严重劣化了电性能. 在Bi1.8Sb0.2Te2.994–ySeyCl0.006样品中, Se的固溶使得\mathrmS\mathrme_\mathrmT\mathrme_2+\mathrmS\mathrmb_\mathrmBi的缺陷形成能更低, 抑制了反位缺陷\mathrmS\mathrmb_\mathrmT\mathrme_2的产生, Bi1.8Sb0.2Te2.694Se0.30Cl0.006样品的少数载流子空穴浓度降至1.49×1016 cm–3, 消除了其对材料热电性能的劣化效果, 显著地提升了材料的功率因子, 室温下达到4.49 mW/(m·K2). 结合Sb和Se固溶增强合金化散射降低材料的热导率, Bi1.8Sb0.2Te2.844Se0.15Cl0.006样品在室温下获得最大ZT值为0.98. 该研究为调控具有复杂成分的Bi2Te3基材料的点缺陷、载流子浓度和热电性能提供了重要的指导.

     

    Bi2Te3-based compounds are thermoelectric materials with the best performance near room temperature. The existence of a large number of complex defects makes defect engineering a core stratagem for adjusting and improving the thermoelectric performance. Therefore, understanding and effectively controlling the existence form and concentration of defects is crucial for achieving high-thermoelectric performance in Bi2Te3-based alloy. Herein, a series of Cl doped n-type quaternary Bi2–x SbxTe3–ySey compounds is synthesized by the zone-melting method. The correlation between defect evolution process and thermoelectric performance is systematically investigated by first-principles calculation and experiments. Alloying Sb on Bi site and Se on Te site induce charged structural defects, leading to a significant change in the carrier concentration. For Bi2–x SbxTe2.994Cl0.006 compounds, alloying Sb on Bi site reduces the formation energy of the \mathrmS\textb_\mathrmTe__2 antisite defect, which generates the antisite defect \mathrmS\textb_\mathrmTe__2 and accompanied with the increase of the minority carrier concentration from 2.09×1016 to 3.99×1017 cm–3. The increase of the minority carrier severely deteriorates the electrical transport properties. In contrast, alloying Se in the Bi1.8Sb0.2Te2.994–ySeyCl0.006 compound significantly lowers the formation energy of the complex defect \mathrmS\mathrme_\mathrmTe+\mathrmS\mathrmb_\mathrmBi, which becomes more energetically favorable and suppresses the formation of the antisite defect \mathrmS\textb_\mathrmTe__2. As a result, the concentration of minority carriers decreases to 1.46×1016 cm–3. This eliminates the deterioration effect of the minority carrier on the electrical transport properties of the material and greatly improves the power factor. A maximum power factor of 4.49 mW/(m·K2) is achieved for Bi1.8Sb0.2Te2.944Se0.05Cl0.006 compound at room temperature. By reducing thermal conductivity through intensifying the phonon scattering via alloying Sb and Se, the maximum ZT value of 0.98 is attained for Bi1.8Sb0.2Te2.844Se0.15Cl0.006 compound at room temperature. Our finding provides an important guidance for adjusting point defects, carrier concentrations, and thermoelectric performances in Bi2Te3-based compounds with complex compositions.

     

    目录

    /

    返回文章
    返回