搜索

x
中国物理学会期刊

电缆绝缘材料交联聚乙烯的老化及寿命调控

CSTR: 32037.14.aps.73.20240201

Aging and life control of cross-linked polyethylene as cable insulation material

CSTR: 32037.14.aps.73.20240201
PDF
HTML
导出引用
  • 交联聚乙烯(cross-linked polyethylene, XLPE)因其优异的力学性能和绝缘性能广泛应用于电力电缆领域中, 但在高压电缆的运行过程中XLPE不可避免会受到电老化、热老化和电-热联合老化的影响, 使得材料的性能和寿命下降, 因此需要对XLPE的老化性能和使用寿命进行调控. 本文介绍了XLPE的结构特性和交联机理, 系统分析了其老化过程及影响机制, 并概述了接枝、共混和纳米粒子改性等调控策略, 同时基于寿命评估模型探究了XLPE因老化而导致的寿命衰减问题. 最后, 展望了调控XLPE电缆绝缘材料使用寿命策略的未来方向, 为XLPE电缆绝缘材料的进一步改进和长期稳定运行提供理论指导.

     

    Cross-linked polyethylene (XLPE) has been widely used in the field of power cables due to its excellent mechanical properties and insulating properties. However, during the manufacturing of high voltage cables, XLPE will inevitably be affected by electrical aging, thermal aging and electro-thermal combined aging, which makes the resistance and life of the material decline. Therefore, it is necessary to enhance the aging resistance of XLPE without affecting its mechanical properties and insulating properties, so as to extend its service life. In this work, the structural characteristics and cross-linking mechanism of XLPE are introduced, the aging process and influencing mechanism are systematically analyzed, and the life decay problems of XLPE due to aging are explored by using methods such as the temperature Arrhenius equation and the inverse power law of voltage. The improvement strategies such as grafting, blending, and nanoparticle modification can be used to enhance the thermal stability, antioxidant properties, and thermal aging resistance of XLPE, thereby extending its service life. Finally, the strategies of adjusting and controlling the service life of XLPE cable insulation materials in the future are discussed, which provide theoretical guidance for further improving long-term stable operation of XLPE cable insulation materials.

     

    目录

    /

    返回文章
    返回