搜索

x
中国物理学会期刊

基于490 nm垂直外腔面发射激光器的长距离水下激光通信系统

CSTR: 32037.14.aps.73.20240860

Long-range underwater wireless optical communication system based on 490 nm vertical-external-cavity surface-emitting laser

CSTR: 32037.14.aps.73.20240860
PDF
HTML
导出引用
  • 水下无线光通信技术为深海勘探和海洋资源开发利用带来了一种效率高且可靠性强的通信新方案. 本文采用490 nm垂直外腔面发射激光器作为光源, 基于声光外调制技术, 采用脉冲位置调制方式(pulse-position modulation, PPM)搭建了长距离水下无线光通信系统. 结合光源的优势并经过软判决算法优化PPM解调来提升水下通信性能, 采用64 PPM调制, 成功实现了96 m的水下传输距离, 在50 MHz时隙频率下得到传输的误码率为1.9 × 10–5. 同时测量到采用软判决解调相较于硬判决解调在性能增益上有着大约2 dB的提升, 验证了软判决算法在提升水下通信性能方面相比硬判决算法的显著优势.

     

    The exploration and utilization of marine resources has promoted the rapid development of marine science and technology, and has put forward higher requirements for underwater communication technology. Long distance underwater wireless optical communication (UWOC) requires the selection of light source on the transmitter side. Laser diodes (LDs) have excellent portability and maneuverability, and have been widely used in the UWOC systems. However, their beam quality is not so good and it is difficult to modulate under high power. In recent years, vertical-external-cavity surface-emitting laser (VECSEL) has received much attention due to its high output power and good beam quality. This work is to explore the advantages of using a 490-nm blue VECSEL as a light source in UWOC, and to improve the performance of the UWOC system by the soft-decision pulse-position modulation (PPM). First, the optical power attenuation coefficient of the channel is obtained, and the measured c is about 0.0591 m–1 in a 96-m-long tap channel. Subsequently, soft-decision and hard-decision are simulated and experimentally verified. Both simulations and measurements show that the bit error rate (BER) can be significantly reduced with soft-decision. Afterwards, we improve the system by using the soft-decision algorithm and investigate the communication performance of 64 PPMs at different bandwidths by adjusting the PPM signal rate. Finally, 50 MHz is chosen as a signal rate in the experiment. Then a UWOC system is demonstrated in this work. The transmitter side consists of a 490-nm VECSEL light source with an acousto-optic modulator (AOM). The pseudo-random binary sequence (PRBS) is loaded into the arbitrary waveform generator (AWG) for digital-to-analog conversion after PPM modulation, and the analog signal is sent to the driver of the AOM for acousto-optic modulation of the incident beam. The laser is focused before entering the AOM and then collimated after having exited to reduce its divergence. The modulated laser beam passes through a distance of 96 m in the tank by using multiple mirrors on both sides of the tank. Then, the beam is focused by a lens to the avalanche photodiode (APD) for photoelectric conversion in the end, and the signal is processed by a mixed signal oscilloscope (MSO) after data acquisition. A soft-decision algorithm is introduced to further optimize the performance of the PPM modulation. When the optical signal passes through a relatively long distance of 96 m, the measured BER is as low as 1.9 × 10–5. This indicates that the soft-decision PPM-based 490 nm blue VECSEL UWOC system performs very well.

     

    目录

    /

    返回文章
    返回