搜索

x
中国物理学会期刊

新型忆阻耦合异质神经元的放电模式和预定义时间混沌同步

CSTR: 32037.14.aps.73.20240872

Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron

CSTR: 32037.14.aps.73.20240872
PDF
HTML
导出引用
  • 首先提出一种新型局部有源忆阻器, 并分析该忆阻器的频率特性、局部有源性及非易失性. 然后将新型局部有源忆阻器引入二维Hindmarsh-Rose神经元和二维FitzHugh-Nagumo神经元, 构建新型忆阻耦合异质神经元模型. 在数值仿真中, 通过改变耦合强度, 发现该模型具有周期尖峰放电模式、混沌尖峰放电模式、周期簇发放电模式及随机簇发放电模式. 最后基于Lyapunov稳定性理论和预定义时间稳定性理论, 提出一种新型预定义时间同步策略, 并将该策略应用于新型忆阻耦合异质神经元的混沌同步中. 结果表明, 与有限时间同步策略、固定时间同步策略和传统预定义时间同步策略相比, 新型预定义时间同步策略的实际收敛时间最小. 研究新型忆阻耦合异质神经元的放电模式和混沌同步有助于探索大脑的神经功能, 并在神经信号处理及保密通信领域中具有重要意义.

     

    The processing and transmission of biological neural information are realized via firing activities of neurons in different regions of brain. Memristors are regarded as ideal devices for emulating biological synapses because of their nanoscale size, non-volatility and synapse-like plasticity. Hence, investigating firing modes of memristor-coupled heterogeneous neurons is significant. This work focuses on modelling, firing modes and chaos synchronization of a memristor-coupled heterogeneous neuron. First, a novel locally active memristor is proposed, and its frequency characteristics, local activity, and non-volatility are analyzed. Then, the novel locally active memristor is introduced into the two-dimensional HR neuron and the two-dimensional FHN neuron to construct a novel memristor-coupled heterogeneous neuron model. In numerical simulations, by changing the coupling strength, it is found that the model exhibits the periodic spike firing mode, the chaotic spike firing mode, the periodic burst firing mode, and the random burst firing mode. Besides, the dynamic behavior of the novel memristor-coupled heterogeneous neuron can switch between periodic behavior and chaotic behavior by changing the initial state. Finally, based on the Lyapunov stability theory and the predefined-time stability theory, a novel predefined-time synchronization strategy is proposed and used to realize the chaos synchronization of the novel memristor-coupled heterogeneous neuron. The results show that compared with a finite-time synchronization strategy, a fixed-time synchronization strategy and a traditional predefined-time synchronization strategy, the novel predefined-time synchronization strategy has a short actual convergence time. Studying the firing modes and chaotic synchronization of the novel memristor-coupled heterogeneous neuron can help explore the neural functions of the brain and is also important in processing the neural signal and secure communication fields.

     

    目录

    /

    返回文章
    返回