搜索

x
中国物理学会期刊

镍基超导体中电荷序的实验研究进展

CSTR: 32037.14.aps.73.20240898

Experimental research progress of charge order of nickelate based superconductors

CSTR: 32037.14.aps.73.20240898
PDF
HTML
导出引用
  • 镍基超导体目前分为一价镍氧化物超导体和高压镍基超导体两个家族, 其中电荷序的研究受到了广泛关注. 这是因为电荷序是强关联电子体系尤其是铜氧化物超导体的研究重点之一, 其不仅对于理解电子关联性有着重要意义, 与非常规超导电性也有着潜在的联系, 而镍基超导体的发现为电荷序与超导电性的研究提供了新的契机. 本文总结了镍基超导体电荷序的实验研究进展, 讨论了镍基超导体中电荷序的存在与否、具体构型以及微观性质等, 以期为进一步深入研究该主题提供新的思路.

     

    Ever since the discovery, nickelate superconductors have attracted great attention, declaring a “nickel age” of superconductivity. Currently, there are two types of nickelate superconductors: low-valence nickelate superconductors REn+1NinO2n+2 (RE, rare earth; n, number of adjacent NiO2 layers) and high-pressure nickelate superconductors La3Ni2O7 and La4Ni3O10. Charge order plays a crucial role in studying the strongly correlated systems, especially the cuprate superconductors, in which potential correlation between charge order and superconductivity has been indicated. Thus, great efforts have been made to explore the charge order in nickelate superconductors. In the infinite-layer nickelate RENiO2, the evidence of charge order with in-plane wavevector of Q // ≈ (1/3, 0) has been found in the undoped and underdoped regime but not in the superconducting samples. However, subsequent studies have indicated that this is not the true charge order inherent in the NiO2 plane,which carries unconventional superconductivity, but rather originates from the ordered excess apical oxygen in the partially reduced impurity phases. On the other hand, the overdoped low-valence nickelate La4Ni3O8 shows well-defined intertwined charge and magnetic order, with an in-plane wavevector of Q // = (1/3, 1/3). Resonant X-ray scattering study has found that nickel orbitals play the most important role in the multi-orbital contribution of charge order formation in this material, which is significantly different from the cuprates with oxygen orbitals dominating the charge modulation. Although the spin order in La3Ni2O7 has been well established, there is still controversy over its spin structure and the existence of coexisting charge order. In La4Ni3O10, intertwined charge and spin density waves have been reported, the origin and characteristics of which remain unknown. Owing to the research on the nickelate superconductors just starting, many questions have not yet been answered, and the exploration of charge order in nickelate superconductors will still be the center of superconductor research.

     

    目录

    /

    返回文章
    返回