搜索

x
中国物理学会期刊

面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究

CSTR: 32037.14.aps.73.20240952

Three-dimensional fluid simulation of a planar coil inductively coupled argon plasma source for semiconductor processes

CSTR: 32037.14.aps.73.20240952
PDF
HTML
导出引用
  • 针对平面线圈感性耦合氩气放电, 本文基于自主开发的三维等离子体流体力学程序, 数值模拟了线圈结构以及放电气压对等离子体空间分布的影响. 研究表明, 由于线圈在环向上具有不对称性, 电子密度也具有明显的环向不均匀性. 随着气压的增大, 这种环向不均匀性逐渐增强. 通过减小线圈的开口, 可以提高等离子体的环向均匀性. 此外, 针对双线圈驱动放电, 还研究了内外双线圈电流幅值之比对于等离子体均匀性的影响. 结果表明, 通过改变内外线圈电流幅值的比值, 有利于提高等离子体的径向均匀性.

     

    In this paper, the effect of the coil structure, as well as the gas pressure, on the spatial distribution of an inductively coupled argon plasma is numerically investigated based on our developed three-dimensional fluid model. The model is based on a modified ambipolar diffusion model, in which the electron density is solved under the quasi-neutral condition, the ion density and neutral particle density are obtained by solving continuity equations, and the ion flux is achieved by solving the full momentum balance equation. In addition, the inductive electric field is governed by the Maxwell equations, which are solved in the frequency domain. The results show that the electron density is nonuniform along the azimuthal direction due to the asymmetry of the coil structure, and the uniformity becomes better as gas pressure decreases. Besides, the plasma azimuthal uniformity can also be improved by reducing the opening of the coil. As the coil radius increases, the plasma density decreases, while the radial uniformity of the plasma improves, and the azimuthal uniformity deteriorates. In addition, the influence of the current amplitude ratio between the inner coil and outer coil on the plasma uniformity in dual-coil discharge is also investigated. It is found that the plasma radial uniformity becomes better by reducing the inter-to-outer coil current amplitude ratio. The results obtained in this work demonstrate that the plasma uniformity can be improved by optimizing the coil structure and adjusting the discharge parameters, which is of significant importance in etching and deposition processes.

     

    目录

    /

    返回文章
    返回