搜索

x
中国物理学会期刊

基于伪逆法的数字温度计温度修正曲线重建算法

CSTR: 32037.14.aps.73.20241104

Algorithm of reconstrucing temperature correction curve of digital thermometer based on pseudo inverse method

CSTR: 32037.14.aps.73.20241104
PDF
HTML
导出引用
  • 目前, 基于工业铂电阻的高精度数字温度计已成为当下热门研究方向, 但受材料和制作工艺的影响, 其测量精度相对一般, 且随使用年限的增加, 出现阻值漂移导致测温偏差在所难免. 温度修正算法是提高数字温度计测量精度的有效方法, 传统的补偿函数修正算法修正效果良好, 但无法解决阻值漂移等问题; 分段线性修正算法原理简单、易于实现, 但需多点测温, 且在面对温度修正曲线非线性变化时, 限制了修正准确度和普适性. 因此, 本文提出了一种基于伪逆法的温度修正曲线重建算法. 该方法利用原始标定数据和多个特征温度点建立重建矩阵. 在实际使用中, 通过待重建的特征温度点便能重建完整的温度修正曲线, 并将重建的温度修正曲线自动纳入样本库中, 从而提高样本的多样性和算法的修正精度. 实验结果表明, 该算法在面对温度修正曲线非线性变化和漂移时, 具有更好的修正效果, 且仅需采集4个特征温度点便能较好地重建完整的温度修正曲线. 因此, 该算法可以为提高数字温度计测量精度提供有效的支撑.

     

    At present, high-precision digital thermometers based on industrial platinum resistance have become a popular research direction and are widely used in environmental monitoring, medical health, industrial automation and other fields. However, due to the influence of materials and manufacturing processes, the measurement accuracy is average. With the increase of service life, it is inevitable that the temperature measurement deviation will be caused by the drift of the resistance value. The algorithm of correcting temperature is an effective method to improve the measurement accuracy of digital thermometers. Traditional compensation function correction algorithms such as polynomial fitting and B-spline fitting have good correction effect, but the problems of resistance drift cannot be solved. The segmented linear correction algorithm is simple and easy to implemente, but it requires multi-point temperature measurements. Because of the nonlinear changes of the temperature correction curve, the correction effect is average, which limits its correction accuracy and universality. Therefore, we propose n algorithm of reconstructing temperature correction curve based on the pseudo inverse method. Firstly, the reconstruction matrix is built by using the original data and multiple characteristic temperature points. Then, the complete temperature correction curve is reconstructed by the characteristic temperature points to be reconstructed and the reconstruction matrix. Finally, the reconstructed temperature correction curve is automatically included in the sample database, which improves the diversity of samples and the correction accuracy of the algorithm. Experimental results show that the proposed algorithm has a better correction effect on nonlinear changes and drifts of the temperature correction curve. And the proposed algorithm is less affected by the number of characteristic temperature points and the selection combination. The complete temperature correction curve is well reconstructed by collecting only 4 characteristic temperature points. Therefore, the proposed algorithm can provide the effective support for improving the measurement accuracy of digital thermometer.

     

    目录

    /

    返回文章
    返回