搜索

x
中国物理学会期刊

面向地基引力波探测频段的超低噪声激光强度噪声评估系统

CSTR: 32037.14.aps.74.20241319

Ultra-low-noise laser intensity noise evaluation system in Hz frequency band for ground-based gravitational wave detection

CSTR: 32037.14.aps.74.20241319
PDF
HTML
导出引用
  • 引力波的直接探测打开了认识宇宙的新窗口, 开辟了多信使天文学, 各种天文事件产生引力波的频段涵盖范围较大, 不同频段引力波的探测机理及方案不尽相同. 目前, 正在运行的地基引力波探测装置的探测频段主要集中在10 Hz—10 kHz范围, 为达到探测灵敏度需求, 要对激光强度噪声进行准确评估并通过光电反馈将其抑制到≤2.0×10–9 Hz–1/2@10 Hz以及≤4.0×10–7 Hz–1/2@10 kHz. 本文基于激光噪声机理分析, 通过探究极小噪声评估方案, 研发低噪声光电探测器, 对比前置放大器不同放大倍数对信号的噪声耦合, 编写上位机操控及数据处理程序, 从而构建了低噪声高精度集成化激光强度噪声评估系统. 实验结果表明, 前置放大器以及动态信号分析仪的整体电子学噪声为3.8×10–9 Hz–1/2@(10 Hz—10 kHz); 光电探测器电子学噪声为 1.4 \times 10^ - 8 \;\textV/\sqrt \textHz @10 Hz & 8.1 \times 10^ - 9 \;\textV/\sqrt \textHz @10 kHz, 通过标准正弦信号进行校准等措施, 检验了评估系统的准确性. 相关研究结果为制备高功率低噪声激光光源及引力波探测等领域提供了实验基础.

     

    The direct detection of gravitational waves has opened up a new window for understanding the universe and trailblazed multi-messenger astronomy. The frequency bands of gravitational waves generated by various astronomical events can cover a broadband range, and the detection mechanisms and schemes for gravitational waves in different frequency bands are different. For example, the ground-based gravitational wave detection has a frequency band ranging from 10 Hz to 10 kHz, which is based on Michelson interferometer. The space gravitational wave detection has a frequency band in a range of 0.1 mHz–1 Hz , which is based on space interferometer. The pulsar gravitational wave detection has a frequency band ranging from 1×10–9 Hz to 1×10–7 Hz, which is based on pulsar timing array. The next-generation ground-based gravitational wave project requires higher sensitivity to detect faint signals, necessitating an assessment system with minimal background noise to accurately measure the laser relative intensity noise. At present, the detection frequency band of ground-based gravitational wave detection devices in operation is mainly concentrated in a range of 10 Hz–10 kHz. To satisfy the detection sensitivity requirements, the laser relative intensity noise should be accurately evaluated and suppressed to ≤2.0×10–9 Hz–1/2 at 10 Hz and ≤4.0×10–7 Hz–1/2 at 10 kHz by photoelectric feedback. In this work, an evaluation and characterization system is constructed for ground-based gravitational wave band laser intensity noise, which is based on low noise and high sensitivity photoelectric detection device and combined with LabVIEW and MATLAB algorithm programming for instrument control and data processing. This low noise evaluation system is used to test the background noise of fast Fourier transform (FFT) analyzer SR760, preamplifier SR560, photoelectric detector electronic noise and intensity noise of homemade optical fiber amplifier, and then the data extraction and image processing are carried out by LabVIEW and MATLAB algorithms, and finally the ground-based gravitational wave frequency band system is evaluated. The experimental results show that the electronic noises for the preamplifier SR560 and the FFT analyzer SR760 are lower than 3.8×10–9 Hz–1/2@(10 Hz–10 kHz). The electronic noise for the photodetector is lower than 1.4 \times 10^ - 8\;\textV/\sqrt \textHz at 10 Hz and 8.1 \times 10^ - 9\;\textV/\sqrt \textHz at 10 kHz, and the accuracy of the system is calibrated and tested by the standard sinusoidal signal. Finally, the noise of commercial laser is evaluated and compared with the factory data to verify the accuracy of the evaluation system. Related research, device and system development provide hardware, software and theoretical basis for preparing high-power low-noise laser light source and gravitational wave detection, and also provide the theoretical basis and evaluation criteria for detecting the ground-based gravitational wave .

     

    目录

    /

    返回文章
    返回