搜索

x
中国物理学会期刊

一种面向原子干涉仪均匀量子非破坏测量的光学环形腔

CSTR: 32037.14.aps.74.20241348

Optical ring cavity for homogeneous quantum nondemolition measurement in atom interferometer

CSTR: 32037.14.aps.74.20241348
PDF
HTML
导出引用
  • 高精细度光学谐振腔辅助的量子非破坏(quantum nondemolition, QND)测量可产生原子自旋/动量压缩态, 是提升原子干涉灵敏度以突破标准量子极限的重要手段. 传统Fabry-Perot腔内驻波场结构导致的光与原子相互作用不均匀性, 使得原子自旋压缩度在演化过程中逐渐衰退. 本文研究一种面向原子干涉仪均匀QND测量的光学环形腔, 分析环形腔内行波场结构对光与原子相互作用均匀性的影响, 设计并研制了高精细度( \calF = 2.4(1)\times 10^4 )高真空兼容型光学环形腔, 并测试了环形腔特性. 在此基础上, 制备88Sr冷原子系综并与环形腔模式耦合, 通过环形腔差分测量方式提取原子经过腔模过程中对环形腔造成的色散相移, 实现对原子数目的非破坏测量. 实验结果表明在探测光功率为20 μW条件下, 测得环形腔色散相移为40 mrad, 耦合进腔内原子数目约为 1\times 10^5 . 调节原子与腔模位置匹配及探测光失谐量等参数, 验证了环形腔色散相移与QND测量理论的一致性. 本文研制的光学环形腔为原子干涉仪中自旋/动量压缩态的产生提供重要解决途径, 有望进一步提升原子干涉灵敏度, 并广泛应用于腔增强型量子精密测量中.

     

    High-finesse optical cavity assisted quantum nondemolition (QND) measurement is an important method of generating high-gain spin or momentum squeezed states, which can enhance the sensitivity of atom interferometers beyond the standard quantum limit. Conventional two-mirror Fabry-Perot cavities have the drawback of a standing wave pattern, leading to inhomogeneous atom-light coupling and subsequent degradation of metrological gain. In this study, we present a novel method of achieving homogeneous quantum nondemolition measurement by using an optical ring cavity to generate momentum squeezed states in atom interferometers. We design and develop a high-finesse ( \calF = 2.4(1) \times 10^4 ), high-vacuum compatible ( 1\times 10^-10 \;\rm mbar) optical ring cavity. It utilizes the properties of traveling wave fields to address the issue of inhomogeneous atom-light interaction. A strontium cold atomic ensemble is prepared and coupled into the cavity mode; the nondemolition measurement of atom number is achieved by extracting the dispersive cavity phase shift caused by the passage of atoms through differential Pound-Drever-Hall measurement. Experimental results indicate that under a probe laser power value of 20 μW, the dispersive phase shift of the ring cavity is measured to be 40 mrad. The effective number of atoms coupled into the cavity mode is around 1 \times 10^5 . The consistency between the ring cavity dispersive phase shift and QND measurement theory is verified by adjusting parameters such as matching the atomic position with the cavity mode and tuning the frequency of the probe laser. The optical ring cavity developed in this work provides an important method for generating spin or momentum squeezed states in atom interferometers. Therefore it holds promise for enhancing their sensitivity, and it is expected to be widely applied to cavity-enhanced quantum precision measurements.

     

    目录

    /

    返回文章
    返回