搜索

x
中国物理学会期刊

纤锌矿铁电材料自发极化强度的本征影响因素

CSTR: 32037.14.aps.74.20241520

Key factors of spontaneous polarization magnitude in wurtzite materials

CSTR: 32037.14.aps.74.20241520
PDF
HTML
导出引用
  • 自发极化强度是衡量铁电材料极化能力的关键指标. 新兴的纤锌矿铁电材料因较高的自发极化而受到广泛关注, 但目前对影响这一性质的关键因素的理解仍然不足. 本文旨在通过结合机器学习和第一性原理方法来解决这一问题. 首先, 计算了40种二元和89种简单三元纤锌矿材料的自发极化强度, 并从元素基本属性、晶体结构参数和电子性质中提取了多种特征. 随后, 采用Boruta算法和距离相关系数分析方法进行特征筛选, 提出了一个全面而精确的纤锌矿材料自发极化强度的机器学习预测模型. 进一步借助SHapley Additive exPlanations分析方法, 阐明了影响自发极化强度的关键因素是阳离子离子势的均值IPi_Aave和晶胞参数a等. 本研究弥补了目前对自发极化强度多因素的影响机制理解的缺乏, 为系统评估新兴纤锌矿材料的自发极化强度提供了帮助, 有助于加快性能优异的纤锌矿铁电材料的筛选. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00073中访问获取.

     

    Emerging wurtzite ferroelectric materials have aroused significant interest due to their high spontaneous polarization magnitude (Ps). However, there is a limited understanding of the key factors that influence Ps. Herein, a machine-learning regression model is developed to predict the Ps using a dataset consisting of 40 binary and 89 simple ternary wurtzite materials. Features are extracted based on elemental properties, crystal parameters and electronic properties. Feature selection is carried out using the Boruta algorithm and distance correlation analysis, resulting in a comprehensive machine learning model. Furthermore, SHapley Additive exPlanations analysis identifies the average cation-ion potential (IPi_Aave) and the lattice parameter (a) as significant determinants of Ps, with IPi_Aave having the most prominent effect. A lower IPi_Aave corresponds to a lower Ps in the material. Additionally, a exhibits an approximately negative correlation with Ps.
    This multifactorial analysis fills the existing gap in understanding the determinants of Ps, and makes a foundational contribution to the evaluating emerging wurtzite materials and expediting the discovery of high-performance ferroelectric materials.
    The dataset in this work can be accessed in the Scientific Data Bank https://www.doi.org/10.57760/sciencedb.j00213.00073.

     

    目录

    /

    返回文章
    返回