搜索

x
中国物理学会期刊

4.5 kW, 1050 nm双端输出近单模全光纤激光振荡器

CSTR: 32037.14.aps.74.20250072

4.5 kW, 1050 nm bidirectional output near-single-mode all-fiber laser oscillator

CSTR: 32037.14.aps.74.20250072
PDF
HTML
导出引用
  • 随着工业应用对激光器性能要求的不断提高, 基于单一谐振腔结构实现两路激光同步输出的双端输出光纤激光器具有广阔的应用前景. 本文首先基于光纤稳态速率方程建立了1050 nm双端输出振荡器理论模型, 仿真分析增益光纤长度与输出功率、效率和受激拉曼散射效应强度间的关系. 实验上搭建中心波长为1050 nm的高功率双端输出全光纤激光振荡器, 详细研究了不同泵浦方式下(单向泵浦、双向泵浦) 1050 nm双端输出光纤激光器的输出特性. 在总泵浦功率为5262 W时, 首次实现了A端输出功率1419 W, B端输出功率3051 W, 总输出功率为4470 W的1050 nm近单模双端激光输出, 激光器光光转换效率达到84.9%, A端和B端测得的光束质量因子M^2分别为1.27和1.31. 进一步优化增益光纤长度, 有效抑制了放大自发辐射和受激拉曼散射效应, 最大输出功率下A端和B端的拉曼抑制比分别提升约6.6 dB和8.1 dB. 实验结果为设计和实现高功率高光束质量短波长双端输出光纤激光器提供参考.

     

    High-power fiber laser oscillators have been widely used in industrial processing, material processing, biomedical and other fields due to their compact structure, simple logic and strong power scalability. With the increasing demand for laser performance in industrial applications, bidirectional output fiber laser based on a single resonator structure has a broad application prospect. In this work, we first establish a theoretical model for a 1050-nm bidirectional output fiber laser oscillator based on the steady-state rate equation, and simulate the relationship between the length of the gain fiber and output power, efficiency, and the intensity of stimulated Raman scattering (SRS). A high-power bidirectional output fiber laser with a central wavelength of 1050 nm is built using an ytterbium-doped fiber with a core/cladding diameter of 20/400 μm. The output characteristics of the 1050-nm bidirectional output fiber laser oscillator under different pump methods (unidirectional pump, bidirectional pump) are experimentally studied in detail. With a total pump power of 5262 W, A-end output power reaches 1419 W and B-end output power reaches 3051 W. Therefore, a total output power of 4470 W with an optical-to-optical conversion efficiency of 84.9% is achieved. The corresponding beam qualities (M2 factor) of both ends are 1.27 and 1.31 when the output powers reach 1458 W and 2733 W, respectively. By further optimizing the length of the gain fiber, the amplified spontaneous emission (ASE) and SRS are effectively suppressed. With a total pump power of 5262 W, the Raman suppression ratios at A-end and B-end are enhanced by ~6.6 dB and ~8.1 dB, respectively. It is expected that higher output power can be achieved by increasing the pump power and optimizing the laser structure in the future.

     

    目录

    /

    返回文章
    返回