搜索

x
中国物理学会期刊

基于协同效应的双偏振三重等离子诱导透明

CSTR: 32037.14.aps.74.20250488

Dynamically tunable multi-frequency modulator via triple plasmon-induced transparency in graphene metasurfaces

CSTR: 32037.14.aps.74.20250488
PDF
HTML
导出引用
  • 传统等离子体诱导透明(plasmon induced transparency, PIT)受限于多种明暗模式间的耦合机制. 为了突破该机制的局限性, 本研究提出了一种双偏振石墨烯超表面结构, 该结构由4组对称L型石墨烯环绕十字形中空石墨烯组成, 通过两个单PIT之间的协同效应形成了三重PIT. 研究发现, 通过费米能级和载流子迁移率的调制, 该结构作为慢光器件展现出高达500的群折射率, 具备优异的慢光调控能力. 作为偏振器件, 该结构具有双偏振特性, 在xy偏振光入射下均能产生三重PIT窗口. 特别的是, 共振频率f6不受入射光偏振方向的影响. 这种在不同偏振光下均具有良好的稳定性和抗干扰能力对偏振器件的设计尤为重要. 因此, 本研究设计了一种慢光调控和偏振选择于一体的多功能集成器件, 为基于偏振不敏感的协同效应提供了新的理论指导和研究方向.

     

    Plasmon-induced transparency (PIT) is a class of electromagnetically induced transparency phenomenon that enhances the interaction between light and matter, thereby improving the performance of nano-optical devices. However, traditional PITs usually rely on near-field coupling between bright modes and dark modes. In order to break through the limitation of this mechanism, in this study we propose a dual-polarized graphene hypersurface structure, which consists of four groups of symmetric L-shaped graphene surrounding cross-shaped hollow graphene, forming a triple PIT through the synergistic effect between two single PITs. The accuracy of the results is verified by simulating the transmission spectra using the finite-difference time-domain, which is highly similar to that of the coupled-mode theory results. It is found that by modulating the Fermi energy levels and carrier mobility, this structure exhibits a group refractive index of up to 500 as a slow-light device, demonstrating excellent slow-light control capability. As a polarizing device, this structure has dual polarization characteristics and can generate a triple PIT window under both x and y polarized light incidence. In particular, the resonant frequency f6 is not affected by the direction of polarization of the incident light. This good stability and resistance to interference in various polarized light conditions are particularly important for designing polarization devices. Meanwhile, we adjust the length parameter of graphene L2 and find that the resonance frequency f6 is still highly stable, showing a better tolerance to structural changes. Therefore, in this study, a multifunctional integrated device with slow light modulation and polarization selection in one device is designed, providing new theoretical guidance and research directions for synergistic effects based on polarization insensitivity.

     

    目录

    /

    返回文章
    返回