搜索

x
中国物理学会期刊

基于矢量焦点超构透镜的偏振结构及高安全性光学加密

CSTR: 32037.14.aps.74.20250508

Polarization structures generated through metalenses with vectorial foci for high-security optical encryption

CSTR: 32037.14.aps.74.20250508
PDF
HTML
导出引用
  • 光学加密技术因其并行处理、大容量和低功耗等优势在信息安全领域发挥着巨大的应用潜力. 其中, 偏振作为光的一个重要自由度, 基于偏振操控和复用的光学加密技术受到广泛研究. 然而当前基于像素化或交错式超表面设计的偏振操控方法, 仍面临制备难度大及相邻单元结构间耦合引起串扰等问题, 复用通道数量受限. 本文提出了一种基于矢量焦点超构透镜的纵向可变、级联偏振结构加密新方法. 该方法采用几何相位调控原理, 通过相同结构尺寸但不同旋向的TiO2纳米柱的定制和排列, 实现超构透镜所需的单相位轮廓, 在纵向多个焦平面上生成多个矢量焦点, 并重构级联的偏振结构. 这里任意两个级联的偏振结构被编码相互正交的偏振旋转角, 随着入射线偏振光的偏振方向发生变化, 偏振结构上的偏振分布随之动态变化, 因此, 不同偏振方向的透射光强度分布也被动态调制, 可实现十通道信息加密. 只有通过正确的密钥(入射波长、入射偏振态、出射光偏振态和观察位置)才能解码加密信息. 该方法结合了超构透镜的多焦点偏振旋转、偏振结构设计及纵向、级联控制, 提升了信息容量和安全性, 在光学信息显示、加密和防伪等领域具有重要的应用潜力.

     

    Optical encryption technologies show significant potential applications in information security due to their advantages of parallel processing, large capacity, and low power consumption. Polarization, as an important degree of freedom of light, has attracted extensive research interest in optical encryption through polarization manipulation and multiplexing. However, current polarization control methods based on pixelated or interleaved metasurfaces still face significant challenges, including fabrication complexity and inevitable crosstalk caused by coupling between the neighboring structures, which limits the number of achievable multiplexing channels. A novel encryption method featuring longitudinal variability and cascaded polarization structures realized by metalenses with vectorial foci is proposed in this work. The intensity distributions on different observation planes are simulated using the Fresnel–Kirchhoff diffraction integral. Based on the geometric phase principle, the designed metalens consisting of TiO2 nanopillars with identical dimensions but spatially variant orientation angles, can generate multiple vectorial foci in different observation planes, reconstructing cascaded polarization structures. Here, any two cascaded polarization structures are encoded with mutually orthogonal polarization rotation angles. As the polarization direction of incident linearly polarized light changes, the polarization distribution encoded on the polarization structures can be dynamically modulated, consequently enabling ten-channel information encryption through polarization-dependent intensity redistribution. The encrypted information can only be decoded using the correct keys (incident wavelength, incident polarization state, output light polarization state, and observation position). This method integrates polarization rotation, polarization structure design, and longitudinal/cascaded control, significantly enhancing information capacity and security. It offers promising applications across various fields, such as optical display, encryption, and anti-counterfeiting.

     

    目录

    /

    返回文章
    返回