搜索

x
中国物理学会期刊

高能量分辨光电子干涉仪研究进展

CSTR: 32037.14.aps.74.20250534

Research progress of high-energy-resolution photoelectron interferometer

CSTR: 32037.14.aps.74.20250534
PDF
HTML
导出引用
  • 近年来, 阿秒极紫外脉冲的产生与相关谱学测量技术的发展, 为研究电子动力学提供了强有力的工具. 阿秒时间尺度上的研究, 能够实时追踪原子分子的电子运动, 测量电子波包演变及其量子特性, 对于揭示电子在原子或分子内部的复杂动力学过程至关重要. 基于阿秒极紫外脉冲串光源发展起来的高能量分辨光电子干涉仪, 以其独特的高能量和高时间分辨特性在阿秒脉冲串光源的表征、原子分子光电离时间延迟、光电子量子态测量以及激光诱导电子动态干涉等动力学研究中实现了重要的应用. 本文围绕建立的先进阿秒串光源和高能量分辨电子谱学测量方法, 对高能量分辨的阿秒超快光电子干涉技术及其应用进行详细介绍, 并基于相关研究进展对阿秒光电子超快动力学以及量子系统相干调控的前景进行了展望.

     

    In recent years, the attosecond extreme ultraviolet (XUV) pulse generation and advanced spectroscopic techniques have provided powerful tools for investigating electron dynamics. Researches on an attosecond timescale can realize real-time tracking of electronic motion in atoms and molecules, enabling the measurement of electron wave packet evolution and quantum characteristics, which are crucial for revealing complex dynamical processes within atomic and molecular systems. High-resolution photoelectron interferometers based on attosecond XUV pulse trains have played an important role in a wide range of applications due to their unique combination of high energy and temporal resolution. These applications include the characterization of attosecond pulse trains, the measurement of photoionization time delays in atoms and molecules, quantum state reconstruction of photoelectrons, and laser-induced electronic interference phenomena. By integrating attosecond temporal resolution with millielectronvolt level energy resolution, high-resolution photoelectron interferometric spectroscopy has emerged as a key technique for probing ultrafast dynamics and quantum state characterization. This review systematically summarizes recent advances in high-resolution attosecond photoelectron interferometry, with a focus on the experimental approaches and spectroscopic techniques required to access electron dynamics on an attosecond scale. These include the generation of narrowband attosecond XUV pulse trains, attosecond-stable Mach-Zehnder interferometers, high-energy resolution time-of-flight electron spectrometers, and quantum interference-based measurement schemes such as RABBIT and KRAKEN. This review discusses in detail the reconstruction of attosecond pulse sequences, shell-resolved photoionization time delay measurements in atoms, spectral phase evolution in Fano resonances, tomographic reconstruction of photoelectron density matrices on an attosecond timescale, and control experiments of laser-induced electronic dynamic interference effects. Through the analysis of recent studies, we demonstrate the powerful potential of attosecond high-energy resolution photoelectron interferometry in tracking ultrafast electron dynamics. Finally, the prospects of attosecond photoelectron spectroscopy in ultrafast dynamics and coherent manipulation of quantum systems are discussed.

     

    目录

    /

    返回文章
    返回