We present a multi-phase equation of state (EOS) for lead (Pb,
Z = 82) in wide ranges of densities and temperatures: 11.34\;\textg/\textc\textm^3 < \rho < 80\; \textg/\textc\textm^3, 300\;\mathrmK < T < 10\;\mathrmMK. The EOS model is based on a standard decomposition of the Helmholtz free energy that is regarded as a function of the specific volume and the temperature into cold term, ion-thermal term, and electronic excitation term. The cold term models both the compression and the expansion states; the ion-thermal term introduces the Debye approximation and the melting entropy; the electronic excitation term employs the Thomas-Fermi-Kirzhnits (TFK) model. The thermodynamic properties of the warm-dense lead are calculated using the extended first-principles molecular dynamics (ext-FPMD) method, with the density reaching five times that of ambient density and the temperature up to 0.4 MK. Our EOS model is used to predict the principle Hugoniot, the room-temperature isotherm, the melting curve, and the thermodynamic properties in the warm-dense region. A systematic comparison with the experimental data, the SESAME-3200 table, and the ext-FPMD calculations is made and shows that our EOS model is consistent with not only the various experimental data, but also the ext-FPMD calculations, indicating some superiority over the SESAME-3200 table in the warm-dense region. The datasets presented in this paper, including the tabular EOS consisting of internal energy and pressure at the different densities and temperatures, are openly available at
https://www.doi.org/10.57760/sciencedb.j00213.00166.