搜索

x
中国物理学会期刊

量子秘密共享研究现状与展望

CSTR: 32037.14.aps.74.20250586

Research status and prospects of quantum secret sharing

CSTR: 32037.14.aps.74.20250586
PDF
HTML
导出引用
  • 随着量子通信和量子计算的快速发展, 人们对数据隐私保护和分布式量子信息处理的需求不断增高. 量子秘密共享作为经典秘密共享的量子延伸, 借助量子力学的基本原理可以在多方之间安全地共享信息, 提供了信息安全的新范式. 作为多方安全量子通信和分布式量子计算的重要基础, 量子秘密共享一经提出便受到广泛关注. 当前, 量子秘密共享研究已经包含经典和量子的场景, 在理论与实验上不断取得新的进展. 但在实际应用中仍然面临着量子信道噪声、设备不完美及量子资源受限等诸多困难和挑战, 实用性和安全性仍然难以兼顾. 本文将简要介绍不同技术路线下量子秘密共享的研究现状, 总结近年来量子秘密共享的发展趋势, 并对其未来的发展方向进行讨论和展望.

     

    Quantum secret sharing (QSS), as a quantum extension of classical secret sharing, uses the basic principles of quantum mechanics to share information safely among multiple parties, providing a new paradigm for information security. As a key foundation for secure multiparty quantum communication and distributed quantum computing, QSS has attracted considerable attention since its emergence. Currently, research in this field includes both classical and quantum scenarios, and continuous progress has been made in both theoretical and experimental aspects. This paper first reviews the current development of QSS for classical information. In this regard, significant and parallel progress has been made in both discrete-variable QSS and continuous-variable QSS. The QSS protocols for sharing classical information, from entangled states to single photons and then to coherent light, have been continuously optimized to better utilize available resources and achieve more efficient implementation under current technological conditions. Meanwhile, round-robin, measurement-device-independent, and other protocols have been steadily improving the security of QSS. Next, one will focus on QSS scheme for quantum secrets, which begins with the symmetry of access structures and introduces basic (k, n) threshold protocols, dynamic schemes that support adaptive agent groups, and symmetric quantum information splitting through entanglement. It further introduces hierarchical quantum secret sharing schemes for asymmetric splitting of quantum information. Considering practical laboratory conditions of quantum states as resources, an overall discussion is conducted on quantum secret sharing with graph states. Afterwards, the design of a continuous-variable scheme for quantum secret sharing is outlined, and entanglement state sharing and quantum teleportation between multiple senders and receivers are introduced. Finally, this review discusses and outlines the future development directions of QSS, thereby inspiring readers to further study and explore the relevant subjects.

     

    目录

    /

    返回文章
    返回