搜索

x
中国物理学会期刊

高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能

CSTR: 32037.14.aps.74.20250613

Structural and optoelectronic properties of lead-free double perovskite Cs2AgInCl2 under pigh pressure

CSTR: 32037.14.aps.74.20250613
PDF
HTML
导出引用
  • 环境友好的无机无铅双钙钛矿材料因具有优异的光电特性, 被认为是铅基钙钛矿材料的良好替代品之一. 本文采用水热法制备了一种非铅双钙钛矿材料Cs2AgInCl6, 利用金刚石对顶砧装置进行高压实验, 研究了室温下压力诱导Cs2AgInCl6的结构变化以及压力对其光电流、光学带隙的调控, 实验最高压力为41.1 GPa. 原位高压拉曼及同步辐射X射线衍射实验结果显示, 8.9 GPa时Cs2AgInCl6 发生了从立方相(Fm\bar3m )到四方相(I4/m)的相变. 原位高压吸收光谱显示带隙在相变前后随压力呈现反向变化趋势. 当压力增大到实验最高点时, 光电流值为常压值的2倍, 且卸压后依然保持. 本研究揭示了压力调控下的无铅双钙钛矿材料结构-性能关联机制, 为通过晶体工程与应变调控优化光电性能提供了可行策略. 压缩后功能的有效保留凸显了此类材料在非易失性压力可调谐光电探测器中的应用潜力.

     

    Environmentally friendly lead-free double perovskite materials have emerged as promising alternatives to lead-based perovskites due to their excellent optoelectronic properties and improved stability. In this study, a highly crystalline lead-free double perovskite, Cs2AgInCl6, is synthesized via a mild hydrothermal method, and its pressure-induced structural evolution and optoelectronic regulation up to 41.1 GPa are systematically investigated at room temperature by using diamond anvil cell (DAC) technology combined with multiple in-situ characterization methods. High-pressure synchrotron X-ray diffraction reveals a structural phase transition from the cubic phase (Fm\bar3m ) to the tetragonal phase (I4/m) at 8.9 GPa. In-situ Raman spectroscopy further confirms this transition through the splitting of characteristic phonon modes, indicating enhanced structural anisotropy. Pressure-dependent optical absorption spectra show a distinct reversal in the trend of bandgap evolution during the phase transition, reflecting a strong coupling between the crystal structure and the electronic band structure. Remarkably, the photocurrent exhibits sustained pressure enhancement behavior, reaching twice the ambient pressure value at 41.1 GPa and the maintaining enhanced performance even after the pressure has been released completely, indicating that the structural changes caused by pressure are stable. These findings provide fundamental insights into the pressure-mediated structure-property relationships in lead-free double perovskites and offer viable strategies for optimizing optoelectronic performance through crystal engineering and strain modulation. The retained post-compression functions highlight their potential applications in non-volatile pressure-tunable photodetectors.

     

    目录

    /

    返回文章
    返回