Realizing the independent control of the national standard time has important practical significance under the current international situation. In this work, an independent time scale that does not rely on external references is developed by studying the self-developed cesium fountain primary frequency standard and domestically-produced optically-pumped small cesium clocks. The specific approach is to use the cesium fountain primary frequency standard as a frequency reference to predict the frequency drift of the optically pumped small cesium clocks. By analyzing the noise characteristics of the optically pumped small cesium clocks, the state equation of the atomic clock is established, and the state of the optically pumped small cesium clock is estimated based on the Kalman filtering algorithm. The calculation of the time scale is based on the frequency state estimation and frequency drift state estimation of atomic clocks, which serve as the forecast values, and is achieved through the weight algorithm. The weight algorithm based on prediction error and the weight algorithm based on noise characteristics are studied. The results show that in the case of using Kalman filtering state estimation, the weight algorithm based on prediction error significantly improves the accuracy of the independent time scale. The cesium fountain primary frequency standard is chosen as the frequency reference to predict the frequency drift of the optically pumped small cesium clock. The accuracy and long-term stability of the independent time scale calculated are much better than those when the time scale itself is used as the frequency reference. Taking the international standard time (UTCr) as the reference, the accuracy of the independent time scale is maintained within 15 ns. The frequency stability is 1.57×10
–14 for a sampling interval of 1 day, 4.29×10
–15 for a sampling interval of 15 days, and 2.87×10
–15 for a sampling interval of 30 days is showing that its stability can meet the current national time demand.