搜索

x
中国物理学会期刊

二维材料与人工视觉系统的多维融合: 前沿突破与范式革新

CSTR: 32037.14.aps.74.20250703

Multidimensional heterogeneous integration of two-dimensional materials and artificial visual systems: Frontier innovations and paradigm-shifting advancements

CSTR: 32037.14.aps.74.20250703
PDF
HTML
导出引用
  • 人工视觉系统因在医疗诊断、机器视觉等领域具备广泛应用前景而备受关注, 但其发展长期受限于传统材料的物理瓶颈. 近年来, 二维半导体材料由于其出色的光电性能和原子级厚度, 被认为是构建人工视觉系统的革命性平台. 最新研究表明二维材料的可调谐带隙与高效光电转换特性已被成功应用于单目三维视差重建, 其动态成像速率可达传统器件的3倍以上. 尽管如此, 该领域仍面临显著挑战, 如二维材料大面积制备工艺复杂性, 宽光谱响应, 高帧率感知与低功耗平衡难题等问题. 这些问题的解决将推动人工传感系统向更智能、更精密的方向突破, 实现从仿生视网膜到类脑智能体的跃迁.

     

    Artificial visual system (AVS) has received increasing attention for their transformative potential in fields such as medical diagnostics, intelligent robotics, and machine vision. Traditional silicon-based imaging technologies, however, face significant limitations, including high energy consumption, limited dynamic range, and integration challenges. Two-dimensional (2D) semiconductor materials, such as MoS2, WSe2, and black phosphorus have emerged as promising alternatives due to their atomically thin structure, tunable bandgaps, high carrier mobility, and superior optoelectronic properties. In this work, recent breakthroughs in the integration of 2D materials with AVS are investigated. Highlighted is the development of a reconfigurable four-terminal phototransistor array based on WSe2 and IGZO heterostructures, which enables monocular 3D disparity reconstruction without the need for multiple cameras or active light sources. The system demonstrates a dynamic imaging rate exceeding 33 frames per second and supports real-time sensing, memory storage, and ambipolar mode switching with ultralow power consumption (as low as 142 pW). Key innovations include multifunctional device architectures that simulate the retinal photoreceptors, bipolar cells, and even neural synapses, achieving functions such as image sensing, real-time adaptation, color recognition, motion tracking, and multimodal perception. Furthermore, by simulating the human neurovisual pathways, these 2D material-based devices can potentially realize in-sensor computing and neuromorphic processing, which substantially reduce data transfer bottlenecks and energy overhead. Nonetheless, the field is still in its formative stage. Here, several critical bottlenecks are emphasized: the lack of scalable, defect-controlled synthesis of 2D heterostructures; the limited spectral bandwidth and color fidelity of current photonic components; the immature state of neuromorphic elements, which often lacks stability, long-term memory, and bio-realistic plasticity. Moreover, the practical integration with real-world applications requires compatibility with high-density manufacturing and dynamic, multi-modal environments. In the future, artificial vision platforms, empowered by engineered 2D materials and heterostructures, will develop into highly compact, intelligent, and context-aware agents capable of autonomous perception and interaction in complex real-world settings.

     

    目录

    /

    返回文章
    返回