Quantum key distribution (QKD) relies on the fundamental principles of quantum mechanics and can theoretically achieve unconditionally secure communication that is provable by information theory. Quantum random number generators, on the other hand, utilize the inherent randomness of quantum phenomena and are capable of generating a truly random entropy source that is unpredictable, unbiased and unrepeatable. These two technologies are crucial for building highly trustworthy and secure communication systems resistant to quantum attacks. However, their large-scale deployment still faces challenges such as system performance optimization, cost control and scale production.
Relying on wafer-level fabrication platforms and micro-nanometer processing, integrated photonics technology integrates the core devices of traditional QKD systems (e.g., light source, modulator, and detector) in a single chip at high density. It significantly improves the miniaturization, operational stability and cost-effectiveness of the system, and enhances the intrinsic security, and becomes a key enabling platform to drive QKD and QRNG from laboratory to engineering applications.
In this paper, we systematically review the recent breakthroughs of photonic integrated QKD based on different material platforms (SOI/InP/TFLN/Si3N4) in terms of core metrics, such as transmission distance and key rate, as well as the significant breakthroughs of integrated QRNG in terms of random number generation rate and system integration. Finally, the future development direction of this field is discussed and outlooked from the four dimensions of practical security of QKD systems, on-chip implementation of cutting-edge QKD protocols, practical fully-integrated QKD systems, and synergistic optimization of high performance and high integration of integrated QRNG.