搜索

x
中国物理学会期刊

量子无噪声线性放大

CSTR: 32037.14.aps.74.20250865

Quantum non-deterministic noiseless linear amplification

CSTR: 32037.14.aps.74.20250865
PDF
HTML
导出引用
  • 量子通信基于量子力学基本原理实现信息的安全传输. 光子是量子通信中重要的信息载体. 基于光子的量子通信协议需要在通信双方传输光子, 但传输过程中由于环境噪声的存在不可避免地会发生光子传输损耗. 光子传输损耗极大地降低了长距离量子通信的通信效率, 甚至威胁通信安全, 成为实现长距离量子通信的主要障碍. 量子无噪声线性放大(noiseless linear amplification, NLA)是抵御光子传输损耗的重要方法, 它通过局域操作和后选择, 可有效地提高输出态中目标态的保真度或平均光子数, 且完美保留目标态的编码信息. 因此, 在量子通信中使用NLA技术可有效克服光子传输损耗, 延长通信距离, 对于实现远距离量子通信具有重要意义. 近年来, 研究人员提出了许多NLA方案, 并完成了部分方案的实验演示, 证明了NLA的可行性. 本文重点介绍在离散变量和连续变量量子系统中针对不同量子态的NLA方案, 并总结了几个具有代表性的NLA实验, 最后, 对NLA技术进行总结和展望. 本综述可为未来长距离量子通信网络的实用化发展提供理论支持.

     

    Quantum communication can realize secure information transmission based on the fundamental principles of quantum mechanics. Photon is a crucial information carrier in quantum communication. The photonic quantum communication protocols require the transmission of photons or photonic entanglement between communicating parties. However, in this process, photon transmission loss inevitably occurs due to environmental noise. Photon transmission loss significantly reduces the efficiency of quantum communication and even threatens its security, so that it becomes a major obstacle for practical long-distance quantum communication. Quantum noiseless linear amplification (NLA) is a promising method for mitigating photon transmission loss. Through local operations and post-selection, NLA can effectively increase the fidelity of the target state or the average photon number in the output state while perfectly preserving the encoded information of the target state. As a result, employing NLA technology can effectively overcome photon transmission loss and extend the secure communication distance.
    In this paper, the existing NLA protocols are categorized into two types, i.e. the NLA protocols in DV quantum systems and CV quantum systems. A detailed introduction is given to the quantum scissor (QS)-based NLA protocols for single photons, single-photon polarization qubits, and single-photon spatial entanglement in the DV quantum systems. The QS-based NLA can effectively increase the fidelity of the target states while perfectly preserving its encodings. In recent years, researchers have made efforts to study various improvements to the QS-based NLA protocols. In the CV quantum systems, researchers have adopted parallel multiple QS structure and generalized QS to increase the average photon numbers of the Fock states, coherent states and two-mode squeezed vacuum states. In addition to theoretical advancements, significant progress has also been made in the experimental implementations of NLA. The representative experimental demonstrations of QS-based NLA protocols are summarized.
    Finally, the future development directions for NLA to facilitate its practical applications are presented. This review can provide theoretical support for practically developing NLA in the future.

     

    目录

    /

    返回文章
    返回