搜索

x
中国物理学会期刊

FeZrB基金属玻璃的强脆转变行为及其对玻璃形成能力的影响机制

CSTR: 32037.14.aps.74.20250889

Fragile-to-strong transition of FeZrB-based metallic glass and its influence on glass-forming ability

CSTR: 32037.14.aps.74.20250889
PDF
HTML
导出引用
  • 玻璃形成液体在温度变化过程中会表现出独特的动力学转变行为, 在降温过程中, 系统会经历从脆性液体到强性液体的转变, 称为强脆转变. 本研究以Fe-Zr-B-M四元体系为研究对象, 通过黏度实验揭示该体系存在显著的强脆转变行为, 并以晶化激活能作为评价指标, 建立Fe-Zr-B-M体系中强脆转变程度与玻璃形成能力之间的负相关性. 结果表明, 类晶团簇在Fe-Zr-B-M体系金属玻璃的凝固过程中起关键作用, 据此提出了基于二十面体团簇向类晶团簇结构转变的强脆转变机理, 并确立了混合焓和错配熵在调控Fe基非晶合金液体强脆转变过程中的重要作用.

     

    Glass-forming liquids exhibit unique dynamic transition behavior during temperature changes. The system undergoes a transition from the fragile liquid to the strong liquid, which is known as the fragile-to-strong transition as the temperature decreases. In order to address the issue of poor glass-forming ability (GFA) in Fe-based alloys, through studying the kinetic behavior of the Fe-Zr-B-M (M = Nb, Ti, Al) alloy system, the mechanism of ductile-brittle transition is revealed and the relationship between the degree of ductile-brittle transition and the GFA is established. In this study, through viscosity measurements, a pronounced fragile-to-strong transition behavior in this system is revealed. By using crystallization activation energy as an evaluation criterion, a negative correlation between the degree of the fragile-to-strong transition and the GFA in the Fe-Zr-B-M system is established. The results indicate that the crystal-like clusters play a critical role in the solidification process of the Fe-Zr-B-M metallic glasses. Based on this, a fragile-to-strong transition mechanism involving the structural transformation from the icosahedral clusters to the crystal-like clusters is proposed. Through theoretical calculations of mixing enthalpy and mismatch entropy and by combining microstructural characterization, it is found that alloy compositions with more negative mixing enthalpy and higher mismatch entropy can effectively suppress the tendency of icosahedral structures to transform into crystal-like structures, thereby hindering crystallization and promoting the formation of a more disordered amorphous structure. This structural feature not only corresponds to superior glass-forming ability but also exhibits a weak fragile-to-strong transition phenomenon. In this work, the intrinsic correlation between viscosity characteristics and the GFA is revealed, providing a theoretical basis for developing Fe-based metallic glasses with high GFA.

     

    目录

    /

    返回文章
    返回