搜索

x
中国物理学会期刊

关联氧化物异质结磁电输运性质的氢离子调控

CSTR: 32037.14.aps.74.20251210

Hydrogen ion regulation of magnetoelectric transport properties in correlated oxide heterojunctions

CSTR: 32037.14.aps.74.20251210
PDF
HTML
导出引用
  • 氢化或质子化通过引入离子功能调控自由度从而调控关联氧化物材料体系中多重自由度间的关联耦合效应, 突破固溶度极限的限制, 协同触发关联氧化物发生电子相变与磁转变, 为探索材料体系中的新奇物态提供了新途径, 在人工智能、关联电子器件及能量转换等领域展现出广阔的应用前景. 本文利用激光分子束外延法制备出亚稳态VO2(B)/La0.67Sr0.33MnO3(LSMO)异质结, 基于氢离子演化方法, 借助多功能氧化物异质结中关联电子与铁磁序间的关联、耦合与重构, 发现体系中弱铁磁绝缘相的新物态并涌现出丰富的结构演变与电子态重构等拓扑化学转变. 氢化触发VO2(B)/LSMO异质结体系的可逆磁电相变归因于氢化相关电子掺杂占据Mn元素eg (↑) 轨道而引发的电子局域化效应以及离子掺杂抑制Mn3+-Mn4+间的双交换相互作用. 本工作为探索关联氧化物材料体系中的新奇物态、莫特物理及其功能特性的器件化提供了可行的途径.

     

    Hydrogenation or protonation provides a feasible pathway for exploring exotic physical functionality and phenomena within correlated oxide system through introducing an ion degree of freedom. This breakthrough provides great potential for enhancing the application of multidisciplinary equipment in the fields of artificial intelligence, related electronics and energy conversions. Unlike traditional substitutional chemical doping, hydrogenation enables the controllable and reversible control over the charge-lattice-spin-orbital coupling and magnetoelectric states in correlated system, without being constrained by the solid-solution limits. Our findings identify proton evolution as a powerful tuning knob to cooperatively regulate the magnetoelectric transport properties in correlated oxide heterojunction, specifically in metastable VO2(B)/La0.7Sr0.3MnO3(LSMO) systems grown via laser molecular beam epitaxy (LMBE). Upon hydrogenation, correlated VO2(B)/LSMO heterojuction undergoes a reversible magnetoelectric phase transition from a ferromagnetic half-metallic state to a weakly ferromagnetic insulating state. This transition is accompanied by a pronounced out-of-plane lattice expansion due to the incorporation of protons and the formation of O—H bonds, as confirmed by X-ray diffraction (XRD). Proton evolution extensively suppresses both the electrical conductivity and ferromagnetic order in the pristine VO2(B)/LSMO system. Remarkably, these properties recover through dehydrogenation via annealing in an oxygen-rich atmosphere, underscoring the high reversibility of hydrogen-induced magnetoelectric transitions. Spectroscopic analyses, including X-ray photoelectron spectroscopy (XPS) and synchrotron-based soft X-ray absorption spectroscopy (sXAS), provide further insights into the physical origin underlying the hydrogen-mediated magnetoelectric transitions. Hydrogen-related band filling in the d-orbital of correlated oxides accounts for the electron localization in VO2(B)/LSMO heterostructure through hydrogenation, while the suppression of the Mn3+-Mn4+ double exchange leads to the magnetic transitions. This work not only expands the hydrogen-related phase diagram for correlated oxide system but also establishes a versatile pathway for designing exotic magnetoelectric functionalities via ionic evolution, which has great potential for developing protonic devices.

     

    目录

    /

    返回文章
    返回