搜索

x
中国物理学会期刊

面向车载运输环境的超导磁体三维冷质量支撑系统空间姿态优化

CSTR: 32037.14.aps.75.20250894

Spatial attitude optimisation of three-dimensional cold mass support system for superconducting magnets for vehicular transport environments

CSTR: 32037.14.aps.75.20250894
PDF
HTML
导出引用
  • 为提升超导磁体的抗冲击能力, 使其适用于车载运输环境, 本文进行了磁体三维冷质量支撑系统动载模型的推导, 结合方向余弦平方和公式与高速公路卡车振动环境构造边界条件, 通过引入应力差异的惩罚项对悬挂结构空间倾角进行优化. 经过分析, 在最优倾角分布下, 冷质量支撑系统共呈现四类不同装配方式的空间姿态. 结合车载运输激励频段分布, 本文基于最大化一阶固有频率的原则设计出最优姿态, 并确定了该姿态下悬挂结构的预紧力上下限. 最后通过有限元仿真研究了高速公路谱随机振动激励下超导磁体的同轴度和应力变化特征. 结果表明, 当悬挂结构的三维空间角度为31.22°, 68.50°和68.50°时, 磁体力学性能达到最佳. 该角度分布对应的最优空间姿态具有125.99 Hz的一阶固有频率. 仿真结果显示, 在高速公路谱随机振动激励下, 超导磁体同轴度变化量小于0.1 mm, 最大von Mises应力出现于碳纤维拉杆根部, 其值远低于碳纤维复合材料的强度极限, 表明该冷质量支撑系统满足车载运输环境的设计要求.

     

    The spatial attitude and dynamic performance of the cold mass support system for superconducting magnets are critical for engineering applications. This study aims to develop a design method for the spatial attitude of tie rods through a series of theoretical derivations and simulations, enabling superconducting magnets to possess a certain degree of dynamic environmental adaptability. This paper first constructs a mathematical model of the three-dimensional cold mass support system under impact loads. Stress formulas for the tie rod under vertical 5g, axial 3g, and lateral 3g impact loads are derived. Based on this, a penalty term for stress differences is introduced to construct the objective function, and the spatial inclination angle of the tie rod is optimised. After determining the acute angle between the tie rod and the coordinate axis, the cold mass support structure exhibits four different attitudes. In order to keep the natural frequency of the magnet away from the main excitation frequency band of vehicle transportation, this study uses the finite element method to perform modal analysis and proposes a method for posture design based on the principle of maximising the first-order natural frequency. Finally, random vibration simulations are conducted for the vibration environment of highway transportation. Reference points are established at both ends of the axis of the magnet body components and the room-temperature tube axis. The displacement response power spectral density (PSD) curves and root mean square values of the reference points during vibration are analysed. The conclusions of this study are as follows. 1) When the acute angles α, β, and γ included between the tie rod and the vertical, axial, and lateral directions are 31.22°, 68.50°, and 68.50°, respectively, the mechanical performance of the three-dimensional cold mass support system reaches its optimal state. 2) When the tie rod is installed in the spatial attitude configuration, the first-order natural frequency of the cold mass system is the highest, with a value of 125.99 Hz. 3) During long-distance integrated vehicle transportation, the maximum values of the vertical and lateral displacements of the magnet assembly axis relative to the room-temperature tube axis are both less than 0.1 mm. The maximum stress locations are both at the root of the carbon fibre tie rod, far below the strength limit of carbon fibre composite materials, indicating that the superconducting magnet possesses a certain degree of dynamic environmental adaptability. These analysis results provide theoretical guidance and data support for the structural safety and stability of this type of superconducting magnet during long-distance integrated vehicle transportation.

     

    目录

    /

    返回文章
    返回