搜索

x
中国物理学会期刊

不同偏振率IR+XUV激光下原子阈上电离研究

CSTR: 32037.14.aps.75.20251279

Above-threshold ionization of atoms under IR+XUV lasers with different polarization rates

CSTR: 32037.14.aps.75.20251279
PDF
HTML
导出引用
  • 原子在红外(IR)和深紫外(XUV)双色激光场中的电离过程是强场物理领域的研究热点之一. 本文利用频域理论研究了原子在不同偏振率IR+XUV双色激光场中的阈上电离过程.研究结果表明, 随着IR激光从线偏振场变为圆偏振场, 除45°光电子出射角度外, 其余角度的光电子能谱均发生变化; 当XUV激光从线偏振场变为圆偏振场时, 电离概率增加. 光电子的能量宽度随着IR激光光强的增加而增加, 电离概率随着XUV激光光强的增加而增加, 两个平台的距离随着XUV激光频率的增加而增大. 同时,利用电子在电离过程中满足的经典能量轨道公式预测了光电子能量随出射角度、激光偏振率、光强和激光频率的变化范围,该结果与量子计算结果一致.本工作将为实验研究原子分子在IR+XUV双色激光场中的电离过程提供理论支撑.

     

    The ionization process of atoms in infrared (IR) and extreme ultraviolet (XUV) two-color laser field is one of the hot topics in strong field physics. By using the frequency-domain theory based on the nonperturbative quantum electrodynamics, we investigate the above-threshold ionization process of atoms subjected to elliptically polarized IR+XUV two-color laser field. The results show that the photoelectron energy width of each plateau can be controlled by the polarization \eta_1 of the IR laser. Specifically, for emission angles less than 45°, the photoelectron energy width decreases as the value \eta_1 increases, whereas for angles more than 45°, it increases with the value of \eta_1 increasing. Furthermore, when the XUV laser changes from a linearly polarized field to a circularly polarized field, the ionization probability increases. Additionally, the energy width of photoelectrons broadens with the intensity of the IR laser increasing, while the ionization probability increases with the intensity of the XUV laser increasing, and the distance between the two plateaus increases with the frequency of the XUV laser increasing. Meanwhile, the energy range of photoelectrons, as a function of emission angle, laser polarization, intensity and frequency, is predicted by using the classical energy orbital formula satisfied by electrons in the process of ionization. These predictions are in agreement with quantum numerical results. This work provides theoretical support for the experimental study of the ionization process of atoms and molecules in IR+XUV two-color laser fields.

     

    目录

    /

    返回文章
    返回