搜索

x
中国物理学会期刊

Sb3+/Er3+共掺杂Cs2NaGdCl6双钙钛矿中能量传递机制与可调谐发光的研究

CSTR: 32037.14.aps.75.20251424

Energy transfer mechanism and tunable luminescence in Cs2NaGdCl6 double perovskite codoped with Sb3+ and Er3+

CSTR: 32037.14.aps.75.20251424
PDF
HTML
导出引用
  • 开发高效、稳定且发光颜色可调的无铅钙钛矿荧光粉是推动其在新一代发光器件中应用的核心挑战. 本研究采用微波固相法成功合成了一系列不同浓度的 Er3+掺杂Cs2NaGd0.985Cl6:0.015Sb3+荧光粉. X射线衍射结果表明, Er3+的引入未引起晶体结构变化或产生杂质相. 在336 nm紫外光激发下, 该材料同时展现出源于基质自陷态激子(STE)的460 nm宽带蓝光发射和Er3+离子的特征绿光/红光发射(524 nm, 550 nm, 667 nm). 通过研究浓度依赖的发光行为, 发现最优Er3+掺杂浓度为0.03, 此时发光强度最大, 量子效率达到37.09%; 其浓度猝灭机制被证实为电偶极-电偶极相互作用. 在该优化浓度下, 证实了从基质STE到Er3+离子之间存在有效的能量传递通道, 能量传递效率为24.58%. 此外, 优化样品Cs2NaGd0.955Cl6:0.015Sb3+, 0.03Er3+表现出良好的热稳定性, 在423 K高温下的发光强度仍能维持室温(298 K)下的69.4%. 更为重要的是, 通过调节Er3+掺杂浓度, 成功实现了发光颜色从蓝光(CIE: 0.160, 0.194)到绿光(CIE: 0.215, 0.374)的可调谐. 本研究不仅阐明了Sb3+/Er3+共掺杂双钙钛矿中的能量传递机制, 而且所制备的高稳定性、颜色可调的荧光粉展现出在绿光发光二极管中的应用潜力.

     

    The development of highly efficient, stable, and color-tunable lead-free perovskite phosphors is a central challenge for their application in next-generation optoelectronic devices. In this work, a series of Cs2NaGd0.985Cl6:0.015Sb3+ phosphors with different Er3+ concentrations are successfully synthesized using a microwave-assisted solid-state method. The X-ray diffraction results confirm that the introduction of Er3+ does not cause any crystal structure change or impurity phase formation. Under 336 nm excitation, the material exhibits a broad blue emission centered at 460 nm from self-trapped excitons (STEs) of the host, as well as characteristic green/red emissions of Er3+ ions (524 nm, 550 nm, 667 nm). By investigating the concentration-dependent luminescence behavior, the optimal Er3+ doping concentration is determined to be 0.03, resulting in maximum emission intensity with an absolute photoluminescence quantum yield of 37.09%. The concentration quenching mechanism is attributed to electric dipole-dipole interaction. At this optimal concentration, , steady-state and transient fluorescence spectroscopy analyses confirm the existence of an efficient energy transfer channel from the host STEs to Er3+ ions, with a calculated energy transfer efficiency of 24.58%. This process significantly enhances the characteristic emission of Er3+ and is key to achieving efficient multicolor luminescence. Furthermore, the optimized sample Cs2NaGd0.955Cl6:0.015Sb3+, 0.03Er3+ at 423 K demonstrates excellent thermal stability, retaining 69.4% of its room-temperature (298 K) emission intensity. More importantly, tunable luminescence from blue (CIE: 0.160, 0.194) to green (CIE: 0.215, 0.374) is successfully achieved by simply adjusting the Er3+ concentration. This work not only deeply elucidates the energy transfer pathway and concentration quenching mechanism in Sb3+/Er3+ co-doped double perovskite system from the perspective of physical mechanism, but also experimentally demonstrates that the developed lead-free phosphor, which integrates high quantum efficiency, excellent thermal stability, and broad color tunability into one material, has broad application potential as core luminescent material in high-performance, environmentally friendly green light-emitting diodes.

     

    目录

    /

    返回文章
    返回