-
将非球谐振子势V(r)=ar2+br4+cr6径向波函数展开为指数函数与多项式函数的乘积,应用多项式函数的系数关系确定了体系的能级和波函数.结果表明,体系处于束缚态时,势参数a,b,c必须满足一定的约束条件.
-
关键词:
- 非球谐振子势V(r)=ar2+br4+cr6 /
- Schr?dinger方程 /
- 精确解
The radial wave function of Schr?dinger equation for the anharmonic oscillator potential V(r)=ar2+br4+cr6 can be written in the form of a product of an exponential function and a polynomial function .The exact energy and wave function of the potential are obtained by using the relation for the coefficient of the polynomial function. In the bound states, the results show that parameters a,b and c in the model potential have to satisfy relevant restraint conditions.







下载: