搜索

x
中国物理学会期刊

双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应

CSTR: 32037.14.aps.54.5003

Self-trapping and its periodic modulation of Bose-Einstein condensates in double-well trap

CSTR: 32037.14.aps.54.5003
PDF
导出引用
  • 研究了双势阱玻色-爱因斯坦凝聚体系(BEC)的自俘获现象(self-trapping). 在平均场近似下通过相平面(phase space)分析的方法研究了两种自俘获的机理:1)势阱中的粒子数在平衡位置附近振动,而相对相位随时间单调变化(running-phase); 2) 势阱中的粒子数和相对相位都在平衡点附近振动. 研究了周期调制场对自俘获现象的影响,发现发生自俘获现象的相变参数能够被周期场非常有效的调制,从而在弱相互作用BEC体系中也可以观察到自俘获现象. 还研究了多体量子涨落对自俘获现象的影响,讨论了在现有的实验条件下对凝聚体自俘获现象进行观察和周期调制.

     

    Self-trapping of Bose-Einstein condensates (BEC) in double-well trap is investigated. Two kinds of self-trapping are discussed through phase space analysis in the mean-field approximation: 1) The number of atoms oscillates near an equilibrium point in the phase space, while relative phase increases monotonously with time (running-phase); 2) Both the number of particles and the relative phase oscillate near an equilibrium point in the phase space. In particular, we investigate how an external periodic filed influence the self-trapping. It is found that the external periodic field may dramatically modulate the critical points at which the transition to self-trapping occurs. With this, we can observe self-trapping phenomenon in a dilute Bose-Einstein condensate with a very weak interaction as well. Finally, the effect of many-body quantum fluctuation on self-trapping is also studied. We also discuss how to observe the self-trapping phenomenon with present experimental techniques.

     

    目录

    /

    返回文章
    返回