搜索

x
中国物理学会期刊

基于启发式分割算法的气候突变检测研究

CSTR: 32037.14.aps.54.5494

Abrupt climate change detection based on heuristic segmentation algorithm

CSTR: 32037.14.aps.54.5494
PDF
导出引用
  • 气候系统的非线性、多层次性和非平稳性对气候突变的检测方法提出了较高的要求.基于t检 验将非平稳序列分割为多个不同尺度的自平稳子序列,Bernaola Galvan提出的启发式分割 算法(BG算法),对非平稳时间序列的突变检测效果较好.在BG算法的基础上,通过理想时间 序列验证BG算法处理非平稳时间序列的有效性,并对近2000a北半球树木年轮距平宽度序列 基于不同层次的思想,检测和分析其中包含的各种尺度的气候突变事件,成功地区分不同尺 度的突变.定义的新物理量——突变密度的分析表明,自然因素作用的基础上,人为因素影 响的加剧可能导致近1000a来突变密集段和稀疏段分布失衡,这可能是全球变化的重要表现 之一.

     

    Climate system is nonlinear,non-stationary and hierarchical,which makes even harder to detect and analyze abrupt climate changes.Based on Student's t-test,Berna ola Galvan recently proposed a heuristic segmentation algorithm to segment the t ime series into several subsets with different scales,which is more effective in detecting the abrupt changes of nonlinear time series.In this paper,we try to v erify the effectiveness of heuristic segmentation algorithm in dealing with nonl inear time series by an ideal time series.Through detecting and analyzing the in formation of abrupt climate changes contained in recent 2000a's tree annual grow th ring,we succeeded in distinguishing abrupt changes with different scales.The research based on the newly defined paramcter of abrupt change density shows tha t human activities might have lead to the recent 1000a's unbalanced distribution of serial and spares segments of abrupt climate changes,which may be one of the manifestations of global temperature change.

     

    目录

    /

    返回文章
    返回