搜索

x
中国物理学会期刊

基于激光器激射特性的新型应变传感系统

CSTR: 32037.14.aps.55.1889

A novel fiber strain sensor based on laser’s transient regime

CSTR: 32037.14.aps.55.1889
PDF
导出引用
  • 报道了一种基于掺铒光纤激光器瞬态特性的新型应变传感系统.用光纤环反射镜和光纤Bragg光栅(FBG)构成Fabry-Perot线型腔.腔内插入一个长周期光纤光栅(LPG),其透射谱的中心波长为1574.4nm.FBG的带宽为0.23nm,不受力时其反射波长为1557.98nm,位于LPG的透射谱左沿;当FBG受力时激射波长向长波方向移动,激光通过LPG时透射损耗增大,腔损耗的增加将使激光激射延迟时间增加.因此,应变的大小可以通过激光产生的延迟时间来测量.这种新型应变传感器的分辨率和灵敏度由抽运光脉冲的高、

     

    A novel fiber strain sensor based on the fiber laser's transient regime is reported. A Sagnac fiber loop and a fiber Bragg grating(FBG) that also acts as the sensing element form the linear Fabry-Perot cavity, in which a long-period grating(LPG) is inserted. The original peak wavelength of the FBG, whose bandwidth is 0.23nm, is 1557.98nm and located on the left side of the LPG dip (1557.4nm). The light reflected from the Sagnac loop and the FBG is transmitted through the LPG twice in each round trip, and the transmission loss increases with the strain-induced wavelength shift of the FBG, which in turn modifies the laser build-up time. The strain value can be obtained by measuring the build-up time of the laser. In the present experiment, the sensor's sensitivity and resolution can be adjusted by simply controlling the pumping level. When the pump pulse's high level and low level are 32 and 6mW, respectively, a sensitivity of 7×10-6ε/μs and resolution of 7×10-7ε are achieved.

     

    目录

    /

    返回文章
    返回