The rapid expansion of the photovoltaic (PV) all market requires an abundant supply of silicon feedstock. A creative and simple three-layer method and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and metallurgical grade silicon. At the temperature of operation (950℃), elements which have an electronegativity greater than that of silicon (e.g., Cu, B, P, etc.) will remain at the anode and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. Two typical morphologies of deposit are found as coherent layer and osteoporosis layer, and deposited silicon particles with different grain size are found embedded in electrolyte. Furthermore, with increasing operation time and current density, re-combination of silicon particles is revealed which yields a larger-sized silicon ball of 1—2 cm in size. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentration, from 127 to 22 ppmw and 986 to 41 ppmw, respectively.