搜索

x
中国物理学会期刊

电解精炼制备太阳级硅杂质行为研究

CSTR: 32037.14.aps.59.1938

Study on the removal of impurities in silicon by electrorefining

CSTR: 32037.14.aps.59.1938
PDF
导出引用
  • 在氟化物电解质体系下,把Cu与冶金级多晶硅熔配成合金作为阳极,利用杂质与硅析出电位的差别,通过控制电解工艺条件和参数,对冶金硅进行了电解精炼提纯研究.结果表明,阳极铜硅合金对硅中的杂质有滞留作用,且在大电流密度下Cu不会随着合金中硅的减少而溶解到电解质中;预电解对电解质净化效果明显,XRF分析表明P含量从10降为1 ppmw;阴极电沉积的硅呈颗粒状,并与电解质混杂,随着电解时间的延长,分散的硅的颗粒聚集成1—2 cm直径的大尺寸硅球.ICP-AES分析表明,最后得到的产物硅与冶金级硅相比,硼含量由127

     

    The rapid expansion of the photovoltaic (PV) all market requires an abundant supply of silicon feedstock. A creative and simple three-layer method and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and metallurgical grade silicon. At the temperature of operation (950℃), elements which have an electronegativity greater than that of silicon (e.g., Cu, B, P, etc.) will remain at the anode and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. Two typical morphologies of deposit are found as coherent layer and osteoporosis layer, and deposited silicon particles with different grain size are found embedded in electrolyte. Furthermore, with increasing operation time and current density, re-combination of silicon particles is revealed which yields a larger-sized silicon ball of 1—2 cm in size. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentration, from 127 to 22 ppmw and 986 to 41 ppmw, respectively.

     

    目录

    /

    返回文章
    返回