搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率超声脉冲激励下金属板的非线性振动现象研究

陈赵江 张淑仪 郑凯

引用本文:
Citation:

高功率超声脉冲激励下金属板的非线性振动现象研究

陈赵江, 张淑仪, 郑凯

Nonlinear vibration in metal plate excited by high-power ultrasonic pulses

Chen Zhao-Jiang, Zhang Shu-Yi, Zheng Kai
PDF
导出引用
  • 对高功率超声脉冲作用下金属板中的超谐波、次谐波、准次谐波以及混沌等非线性振动现象进行了实验和理论研究.在实验中,高功率超声换能器产生脉冲调制的高频振动激励金属板产生非线性振动,利用激光测振技术测量不同尺寸和不同固定方式下金属板复杂的非线性振动情况,并对其进行了时序分析、频谱分析以及相空间分析.根据实验条件,提出包含非线性接触阻尼的振动-碰撞动力学模型,用以研究强超声振动-碰撞作用下的板非线性振动机制,并进行了相应的理论计算.计算结果表明,超声换能器的变幅杆与金属板之间的间歇性高频碰撞作用是金属板强非线性振
    Nonlinear vibration phenomena including superharmonics, subharmonics, quasi-subharmonics and chaos in metal plate excited by intensive ultrasonic pulses are studied experimentally and theoretically. In the experiments, the plates are excited by the ultrasonic pulse modulated high frequency vibration, and the nonlinear vibration velocities of the plates are measured by laser vibrometer for different sizes and fixing conditions of the plates. The analysis of time series, frequency spectrum and phase space are also performed to characterize the nonlinear vibration of the plate. According to the experimental conditions, a vibro-impact model with nonlinear contact damping is presented to explore the generation mechanism of the complicated nonlinear vibration in the plate. In the dynamic model, the intermittent vibro-impact between the ultrasonic transducer horn and plate are considered as the main source for generating the strongly nonlinear vibration in the plate. The numerical calculation results are in agreement with the observed experimental phenomena.
    • 基金项目: 国家自然科学基金(批准号: 10574073)资助的课题.
    [1]

    [1]Sathyamoorthy M 1987 Appl. Mech. Rev. 40 1553

    [2]

    [2]Qiu J, Feng Z C 2000 Comput. Struct. 75 491

    [3]

    [3]Wang D X, Zhang J W, Wu R H 2008 Acta Phys. Sin. 57 6741 2 (in Chinese) [王旦霞、张建文、吴润衡 2008 物理学报 57 6741]

    [4]

    [4]Amabili M 2008 Nonlinear Vibrations and Stability of Shells and 2 Plates (New York: Cambridge University)

    [5]

    [5]Astashev V K, Babitsky V I 2007 Ultrasonic Processes and Machines: Dynamics, Control and Applications (Berlin: Springer-Verlag)

    [6]

    [6]Bao X Q, Bar-Cohen Y, Chang Z S, Dolgin B P, Sherrit S, Pal D S, Du S, Peterson T 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 1147

    [7]

    [7]Song A J, Han L 2007 Acta Phys. Sin. 56 3820 (in Chinese) [宋爱军、韩雷 2007 物理学报 56 3820]

    [8]

    [8]Favro L D, Han X Y, Ouyang Z, Sun G, Sui H, Thomas R L 2000 Rev. Sci. Instrum. 71 2418

    [9]

    [9]Wiercigroch M, Neilson R D, Player M A 1999 Phys. Lett. A 259 91

    [10]

    ]Han X Y, Zeng Z, Li W, Islam M S, Lu J P, Loggins V, Yitamben E, Favro L D, Newaz G, Thomas R L 2004 J. Appl. Phys. 95 73792

    [11]

    ]Han X Y, Loggins V, Zeng Z, Favro L D, Thomas R L 2004 Appl. Phys. Lett. 85 1332

    [12]

    ]Zheng K, Zhang S Y, Chen Z J, Fan L, Zhang H 2008 Appl. Phys. Lett. 92 221902

    [13]

    ]Babitsky V I, Krupenin V L 2001 Vibrations of Strongly Nonlinear Systems (Berlin: Springer-Verlag)

    [14]

    ]Wiercigroch M, Dekraker B 2000 Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities (Singapore: World Scientific)

    [15]

    ]Zhang Q C, Wang W, He X J 2008 Acta Phys. Sin. 57 5384 (in Chinese) [张琪昌、王炜、何学军 2008 物理学报 57 5384]

    [16]

    ]Wang L, Xu W, Li Y 2008 Chin. Phys. B 17 2446

    [17]

    ]Twiefel J, Potthast C, Mracek M, Hemsel T, Sattel T, Wallaschek J 2008 J. Electroceram. 20 209

    [18]

    ] Lauterborn W, Cramer E 1981 Phys. Rev. Lett. 47 1445

    [19]

    ]Gong Y J, Zhang D, Xi X Y, Gong X F, Liu Z 2007 Acta Phys. Sin. 56 7051 (in Chinese)[龚燕君、章东、郗晓宇、龚秀芬、刘政 2007 物理学报 56 7051]

    [20]

    ]Wang W J, Lin R M 2003 J. Sound Vib. 259 1

    [21]

    ]Packard N H, Crutchfield J P, Farmer J D, Shaw R S 1980 Phys. Rev. Lett. 45 712

    [22]

    ]Takens F 1981 Dynamical Systems and Turbulence, Lecture Notes in Mathematics (Berlin: Springer) p366

    [23]

    ]Yang S Q, Jia C Y 2002 Acta Phys. Sin. 51 2452 (in Chinese) [杨绍清、贾传荧 2002 物理学报 51 2452]

    [24]

    ]Oh K, Nayfeh A H 1996 Nonlin. Dynam. 11 143

    [25]

    ]Babitsky V I 1998 Theory of Vibro-Impact Systems and Applications (Berlin: Springer)

    [26]

    ]Ibrahim R A 2009 Vibro-Impact Dynamics: Modeling, Mapping and Application (Berlin: Springer-Verlag)

    [27]

    ]Potthast C, Twiefel J, Wallaschek J 2007 J. Sound Vib. 308 405

    [28]

    ] Marhefka D W, Orin D E 1996 Proceedings of IEEE Inernational Conference on Robotics and Automation (Vol.2) (Minneapolis: IEEE) p1662

    [29]

    ]Von Groll G, Ewins D J 2002 J. Vib. Acoust. 124 350

    [30]

    ]Ganiev M M 2008 Russ. Aeronaut. 51 56

    [31]

    ]Cao Z Y 1989 Vibration Theory of Plates and Shells (Beijing: China Railway Publishing House) p150 (in Chinese) [曹志远 1989 板壳振动理论 (北京: 中国铁道出版社) 第150页]

    [32]

    ]Holmes P J 1982 J. Sound Vib. 84 173

    [33]

    ]Jiang Z H, Liu X Y, Peng Y J, Li J W 2005 Acta Phys. Sin. 54 5692 (in Chinese) [姜泽辉、刘新影、 彭雅晶、李建伟 2005 物理学报 54 5692]

    [34]

    ]Luo G W, Me J H, Zhu X F, Zhang J G 2008 Chaos Soliton Fract. 36 1340

  • [1]

    [1]Sathyamoorthy M 1987 Appl. Mech. Rev. 40 1553

    [2]

    [2]Qiu J, Feng Z C 2000 Comput. Struct. 75 491

    [3]

    [3]Wang D X, Zhang J W, Wu R H 2008 Acta Phys. Sin. 57 6741 2 (in Chinese) [王旦霞、张建文、吴润衡 2008 物理学报 57 6741]

    [4]

    [4]Amabili M 2008 Nonlinear Vibrations and Stability of Shells and 2 Plates (New York: Cambridge University)

    [5]

    [5]Astashev V K, Babitsky V I 2007 Ultrasonic Processes and Machines: Dynamics, Control and Applications (Berlin: Springer-Verlag)

    [6]

    [6]Bao X Q, Bar-Cohen Y, Chang Z S, Dolgin B P, Sherrit S, Pal D S, Du S, Peterson T 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 1147

    [7]

    [7]Song A J, Han L 2007 Acta Phys. Sin. 56 3820 (in Chinese) [宋爱军、韩雷 2007 物理学报 56 3820]

    [8]

    [8]Favro L D, Han X Y, Ouyang Z, Sun G, Sui H, Thomas R L 2000 Rev. Sci. Instrum. 71 2418

    [9]

    [9]Wiercigroch M, Neilson R D, Player M A 1999 Phys. Lett. A 259 91

    [10]

    ]Han X Y, Zeng Z, Li W, Islam M S, Lu J P, Loggins V, Yitamben E, Favro L D, Newaz G, Thomas R L 2004 J. Appl. Phys. 95 73792

    [11]

    ]Han X Y, Loggins V, Zeng Z, Favro L D, Thomas R L 2004 Appl. Phys. Lett. 85 1332

    [12]

    ]Zheng K, Zhang S Y, Chen Z J, Fan L, Zhang H 2008 Appl. Phys. Lett. 92 221902

    [13]

    ]Babitsky V I, Krupenin V L 2001 Vibrations of Strongly Nonlinear Systems (Berlin: Springer-Verlag)

    [14]

    ]Wiercigroch M, Dekraker B 2000 Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities (Singapore: World Scientific)

    [15]

    ]Zhang Q C, Wang W, He X J 2008 Acta Phys. Sin. 57 5384 (in Chinese) [张琪昌、王炜、何学军 2008 物理学报 57 5384]

    [16]

    ]Wang L, Xu W, Li Y 2008 Chin. Phys. B 17 2446

    [17]

    ]Twiefel J, Potthast C, Mracek M, Hemsel T, Sattel T, Wallaschek J 2008 J. Electroceram. 20 209

    [18]

    ] Lauterborn W, Cramer E 1981 Phys. Rev. Lett. 47 1445

    [19]

    ]Gong Y J, Zhang D, Xi X Y, Gong X F, Liu Z 2007 Acta Phys. Sin. 56 7051 (in Chinese)[龚燕君、章东、郗晓宇、龚秀芬、刘政 2007 物理学报 56 7051]

    [20]

    ]Wang W J, Lin R M 2003 J. Sound Vib. 259 1

    [21]

    ]Packard N H, Crutchfield J P, Farmer J D, Shaw R S 1980 Phys. Rev. Lett. 45 712

    [22]

    ]Takens F 1981 Dynamical Systems and Turbulence, Lecture Notes in Mathematics (Berlin: Springer) p366

    [23]

    ]Yang S Q, Jia C Y 2002 Acta Phys. Sin. 51 2452 (in Chinese) [杨绍清、贾传荧 2002 物理学报 51 2452]

    [24]

    ]Oh K, Nayfeh A H 1996 Nonlin. Dynam. 11 143

    [25]

    ]Babitsky V I 1998 Theory of Vibro-Impact Systems and Applications (Berlin: Springer)

    [26]

    ]Ibrahim R A 2009 Vibro-Impact Dynamics: Modeling, Mapping and Application (Berlin: Springer-Verlag)

    [27]

    ]Potthast C, Twiefel J, Wallaschek J 2007 J. Sound Vib. 308 405

    [28]

    ] Marhefka D W, Orin D E 1996 Proceedings of IEEE Inernational Conference on Robotics and Automation (Vol.2) (Minneapolis: IEEE) p1662

    [29]

    ]Von Groll G, Ewins D J 2002 J. Vib. Acoust. 124 350

    [30]

    ]Ganiev M M 2008 Russ. Aeronaut. 51 56

    [31]

    ]Cao Z Y 1989 Vibration Theory of Plates and Shells (Beijing: China Railway Publishing House) p150 (in Chinese) [曹志远 1989 板壳振动理论 (北京: 中国铁道出版社) 第150页]

    [32]

    ]Holmes P J 1982 J. Sound Vib. 84 173

    [33]

    ]Jiang Z H, Liu X Y, Peng Y J, Li J W 2005 Acta Phys. Sin. 54 5692 (in Chinese) [姜泽辉、刘新影、 彭雅晶、李建伟 2005 物理学报 54 5692]

    [34]

    ]Luo G W, Me J H, Zhu X F, Zhang J G 2008 Chaos Soliton Fract. 36 1340

  • [1] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性. 物理学报, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [2] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [3] 沈环, 胡春龙, 邓绪兰. 超短脉冲激光场中间二氯苯的激发态动力学. 物理学报, 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [4] 于洁, 郭霞生, 屠娟, 章东. 超声造影剂微泡非线性动力学响应的机理及相关应用. 物理学报, 2015, 64(9): 094306. doi: 10.7498/aps.64.094306
    [5] 范剑, 赵文礼, 张明路, 檀润华, 王万强. 随机共振动力学机理及其微弱信号检测方法的研究. 物理学报, 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [6] 胡梅, 刘新国, 谭瑞山. 碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响. 物理学报, 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [7] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学. 物理学报, 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [8] 王成会, 程建春. 弹性微管内气泡的非线性受迫振动. 物理学报, 2013, 62(11): 114301. doi: 10.7498/aps.62.114301
    [9] 王爱星, 刘义保, 房超. HOCl分子高激发振动态的动力学势研究. 物理学报, 2012, 61(5): 053102. doi: 10.7498/aps.61.053102
    [10] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学. 物理学报, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [11] 许雪松, 张文芹, 金坤, 尹淑慧. 反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响. 物理学报, 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [12] 冯海冉, 李鹏, 郑雨军, 丁世良. 用李代数方法解析研究线性三原子分子振动的动力学纠缠. 物理学报, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [13] 秦卫阳, 杨永锋, 王红瑾, 任兴民. 非线性振动系统的预测同步方法研究. 物理学报, 2008, 57(4): 2068-2072. doi: 10.7498/aps.57.2068
    [14] 张琪昌, 王 炜, 何学军. 研究强非线性振动系统同宿分岔问题的规范形方法. 物理学报, 2008, 57(9): 5384-5389. doi: 10.7498/aps.57.5384
    [15] 宋爱军, 韩 雷. 热超声键合换能系统动力学特性的非线性检验. 物理学报, 2007, 56(7): 3820-3826. doi: 10.7498/aps.56.3820
    [16] 郑敦胜, 吴国祯. 分子高激发振动态的动力学特性研究. 物理学报, 2002, 51(10): 2229-2232. doi: 10.7498/aps.51.2229
    [17] 郑雨军, 丁世良. 动力学对称群方法对三原子分子高激发振动态的理论研究. 物理学报, 1999, 48(3): 438-445. doi: 10.7498/aps.48.438
    [18] 傅柔励, 叶红娟, 傅荣堂, 于志刚, 孙鑫. C60中非线性激发的动力学研究. 物理学报, 1994, 43(8): 1336-1343. doi: 10.7498/aps.43.1336
    [19] 徐积仁, 黄南堂, 蒋义枫, 傅广生, 吴振球. 强红外场作用下BCl3振动态传能动力学研究. 物理学报, 1983, 32(7): 854-866. doi: 10.7498/aps.32.854
    [20] 古孝鸿. 非线性串联电路中的拟张弛振动. 物理学报, 1965, 21(1): 191-207. doi: 10.7498/aps.21.191
计量
  • 文章访问数:  5408
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-09
  • 修回日期:  2009-10-12
  • 刊出日期:  2010-03-05

高功率超声脉冲激励下金属板的非线性振动现象研究

  • 1. 南京大学声学研究所,近代声学教育部重点实验室,南京 210093
    基金项目: 国家自然科学基金(批准号: 10574073)资助的课题.

摘要: 对高功率超声脉冲作用下金属板中的超谐波、次谐波、准次谐波以及混沌等非线性振动现象进行了实验和理论研究.在实验中,高功率超声换能器产生脉冲调制的高频振动激励金属板产生非线性振动,利用激光测振技术测量不同尺寸和不同固定方式下金属板复杂的非线性振动情况,并对其进行了时序分析、频谱分析以及相空间分析.根据实验条件,提出包含非线性接触阻尼的振动-碰撞动力学模型,用以研究强超声振动-碰撞作用下的板非线性振动机制,并进行了相应的理论计算.计算结果表明,超声换能器的变幅杆与金属板之间的间歇性高频碰撞作用是金属板强非线性振

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回