-
利用等离子体增强化学气相沉积法制备Si-rich SiNx/N-rich SiNy多层膜,分别使用热退火和激光辐照技术对多层膜进行退火,以构筑三维限制、尺寸可控、有序的硅纳米晶.实验结果表明,经退火后,纳米硅晶粒在Si-rich SiNx子层内形成,其尺寸可由Si-rich SiNx子层厚度调控.实验还发现,激光辐照技术相比于热退火能更有效地改善多层膜的微结构,提高多层膜的晶化率,以激光技术诱导晶化的Si-rich SiNx/N-rich SiNy多层膜作为有源层构建电致发光器件,在室温下观察到了增强的电致可见发光,并且发光效率较退火前提高了40%以上.SiN-based multilayers were prepared in a plasma enhanced chemical vapor deposition system followed by subsequently thermal annealing and laser irradiation with the aim of fabrication three-dimensional constrained, size-controlled and well-regulated Si nanocrystals. The experimental results show that Si nanocrystals grow in the Si-rich SiN sublayer. Furthermore, the grain size can be controlled according to the thick of Si-rich SiN. It is also found that the crystalline fraction of the multilayers irradiated by laser is significantly higher than that by thermal annealing. The devices that employing the laser-irradiated multilayer as luminescent active layer exhibit an enhanced visible electroluminescence and the external quantum efficiency is improved by 40% in comparison with the device without annealing.
-
Keywords:
- silicon nitride /
- multilayer /
- constrained crystallization /
- Si nanocrystals







下载: