搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究

孙建敏 赵高峰 王献伟 杨雯 刘岩 王渊旭

引用本文:
Citation:

Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究

孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭

Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT

Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu
PDF
导出引用
  • 运用密度泛函理论下的广义梯度近似和交换关联函数对Cu吸附(SiO2)n(n=1—8)团簇的几何结构、电荷分布、稳定性和电子性质进行了较详细的研究,结果表明: Cu原子易于和带有悬挂键的Si原子作用并形成"铜岛膜"; Cu吸附(SiO2)n团簇后Si原子失去电子能力减弱,O原子得到电子能力增强;Cu(SiO2)n(n
    Equilibrium geometries, charge distributions, stabilities, and electronic properties of the Cu-adsorbed (SiO2)n (n=1—8) clusters are investigated by using the density functional theory in the generalized gradient approximation for exchange-correlation functional. The results show that the Ag atom preferably binds to silicon atom with dangling bond, and the incoming Ag atoms tend to cluster on the existing Ag cluster leading to the formation of Ag islands. Therefore the ability for Si to lose electron is weaker, while the ability for Si to gain electron is stronger. In addition, the energy gaps between the highest occupied and the lowest unoccupied molecular orbitals remarkably decrease compared with the pure (SiO2)n (n=1—8) clusters, eventually approaching the near infrared radiation region.
    • 基金项目: 国家自然科学基金(批准号: 10804027)资助的课题.
    [1]

    Helms D L 1969 Elements of Physical Geology (New York: Ronald)

    [2]

    Helms C R, Deal B E 1988 The Physics and Chemistry of SiO2 and the Si-SiO2 Interface (New York: Plenum)

    [3]

    234705

    [4]

    Salleo A, Taylor S T, Martin M C, Panero W R, Jeanloz R, Sands T, Genin, F Y 2003 Nat. Mater. 2 796

    [5]

    Che S, Garcia-Bennett A E, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T 2003 Nat. Mater. 2 801

    [6]

    Suzuki K, Ikari K, Imai H 2004 J. Am. Chem. Soc. 126 462

    [7]

    Harkless J A, Stilinger D K, Stillinger F H 1996 J. Phys. Chem. 100 1098

    [8]

    Li S, Silvers S J, El-Shall M S 1997 J. Phys. Chem. B 101 1794

    [9]

    Wang L S, Nicholas J B, Dupuis M, Wu H, Colson S D 1997 Phys. Rev. Lett. 78 4450

    [10]

    Liu X, Zhao G F, Guo L J, Wang X W, Zhang J, Jing Q, Luo Y H 2007 Chin. Phys. 16 3359

    [11]

    Liu Y Z, Luo C L 2004 Acta Phys. Sin. 53 592 (in Chinese) [刘玉真、 王成林 2004 物理学报53 592]

    [12]

    Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 Chin. Phys. B 17 2938

    [13]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李 兵、杨传路、齐凯天、张 岩、盛 勇 2009 物理学报58 3104]

    [14]

    Sanchez A, Abbet S, Heiz U, Schneider W D, Hakkinen H, Barnett R N, Landman U 1999 J. Phys. Chem. A 103 9573

    [15]

    Fayet P, Granzer F, Hegenbart G, Moisar E, Pischel B, Wste L 1985 Phys. Rev. Lett. 55 3002

    [16]

    Lopez N, Illas F, Pacchioni G 1999 J. Phys. Chem. B 103 1712

    [17]

    Kuk Y, Kim D K, Suh Y D, Park K H, Noh H P, Oh S J, Kim S K 1993 Phys. Rev. Lett. 70 1948

    [18]

    Ohno T R, Chen Y, Harvey S E, Kroll G H, Benning P J, Weaver J H, Chibante L P F, Smalley R E 1993 Phys. Rev. B 47 2389

    [19]

    Rowe J E, Rudolf P, Tjeng L H, Malic R A, Meigs G, Chen C T, Chen J, Plummer W 1992 Int. J. Mod. Phys. B 6 3909

    [20]

    Owens D, Aldao C, Poirier D, Weaver J 1995 Phys. Rev. B 51 17068

    [21]

    Hebard A F, Ruel R R, Eom C B 1996 Phys. Rev. B 54 14052

    [22]

    Dunn A W, Cotier B N, Nogaret A, Moriaty P, Beton P H 1997 Appl. Phys. Lett. 71 2937

    [23]

    Yang G, Wang W, Yan L, Lu H, Yang G, Chen Z 2002 Opt. Commun. 209 445

    [24]

    Kreibig V, Vollmer M 1995 Optical Properties of Metal Clusters (New York: Springer-Verlag Berlin Heidelberg)

    [25]

    Mazzoldi P, Arnold G W, Battaglin G., Gonella F, Haglund R F 1996 J. Nonlinear Opt. Phys. Mater. 5 285

    [26]

    Lee M, Kim T S, Choi Y S 1997 J. Non-Cryst. Solids 211 143

    [27]

    Compagnini G, Scalisi A A, Puglisi O 2002 Phys. Chem. Chem. Phys. 4 2787

    [28]

    Kppe R, Schackel H 1992 Heteroat. Chem. 3 329

    [29]

    Mehner T, Schnckel H, Jouany C, Gadea F X, Barthelat J C 1992 Heteroat. Chem. 3 333

    [30]

    Chenier J H B, Howard J A, Joly H A, Mile B, Timms P L 1990 J. Chem. Soc., Chem. Commun. 1990 581

    [31]

    Howard J A, Jones R, Tse J S, Tomietto M, Timms P L, Seely A J 1992 J. Phys. Chem. 96 9144

    [32]

    Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L 2003 Proc. Natl. Acad. Sci. U. S. A. 100 13549

    [33]

    Brongersma M 2003 Nat. Mater. 2 296

    [34]

    Hirsch L R, Jackson J B, Lee A, Halas N J 2003 Anal. Chem. 75 2377

    [35]

    Sun Q, Wang Q, Rao B K, Jena P 2004 Phys. Rev. Lett. 93 186803

    [36]

    Zhao G F, Zhi L L, Guo L J, Zeng Z 2007 J. Chem. Phys. 127

    [37]

    Huberg K P, Herzberg G 1989 Molecular Spectra and Molecular Structure-Ⅳ (New York: Van Nostrand-Reinhold)

    [38]

    Scherer J J, Paul J B, Collier C P, Saykally R J 1995 J. Chem. Phys. 102 5190

    [39]

    Lide D R 2000 CRC Handbook of Chemistry and Physics (New York: CRC)

    [40]

    Nayak S K, Rao B K, Khanna S N, Jena P 1998 J. Chem. Phys. 109 1245

    [41]

    Bromley S T, Zwijnenburg M A, Maschmeyer T 2003 Phys. Rev. Lett. 90 035502

    [42]

    Sun Q, Wang Q, Jena P 2004 Phys. Rev. Lett. 92 039601

    [43]

    Song J, Choi M 2002 Phys. Rev. B 65 241302

    [44]

    Erkoc S 2003 Chem. Phys. Lett. 369 605

  • [1]

    Helms D L 1969 Elements of Physical Geology (New York: Ronald)

    [2]

    Helms C R, Deal B E 1988 The Physics and Chemistry of SiO2 and the Si-SiO2 Interface (New York: Plenum)

    [3]

    234705

    [4]

    Salleo A, Taylor S T, Martin M C, Panero W R, Jeanloz R, Sands T, Genin, F Y 2003 Nat. Mater. 2 796

    [5]

    Che S, Garcia-Bennett A E, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T 2003 Nat. Mater. 2 801

    [6]

    Suzuki K, Ikari K, Imai H 2004 J. Am. Chem. Soc. 126 462

    [7]

    Harkless J A, Stilinger D K, Stillinger F H 1996 J. Phys. Chem. 100 1098

    [8]

    Li S, Silvers S J, El-Shall M S 1997 J. Phys. Chem. B 101 1794

    [9]

    Wang L S, Nicholas J B, Dupuis M, Wu H, Colson S D 1997 Phys. Rev. Lett. 78 4450

    [10]

    Liu X, Zhao G F, Guo L J, Wang X W, Zhang J, Jing Q, Luo Y H 2007 Chin. Phys. 16 3359

    [11]

    Liu Y Z, Luo C L 2004 Acta Phys. Sin. 53 592 (in Chinese) [刘玉真、 王成林 2004 物理学报53 592]

    [12]

    Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 Chin. Phys. B 17 2938

    [13]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李 兵、杨传路、齐凯天、张 岩、盛 勇 2009 物理学报58 3104]

    [14]

    Sanchez A, Abbet S, Heiz U, Schneider W D, Hakkinen H, Barnett R N, Landman U 1999 J. Phys. Chem. A 103 9573

    [15]

    Fayet P, Granzer F, Hegenbart G, Moisar E, Pischel B, Wste L 1985 Phys. Rev. Lett. 55 3002

    [16]

    Lopez N, Illas F, Pacchioni G 1999 J. Phys. Chem. B 103 1712

    [17]

    Kuk Y, Kim D K, Suh Y D, Park K H, Noh H P, Oh S J, Kim S K 1993 Phys. Rev. Lett. 70 1948

    [18]

    Ohno T R, Chen Y, Harvey S E, Kroll G H, Benning P J, Weaver J H, Chibante L P F, Smalley R E 1993 Phys. Rev. B 47 2389

    [19]

    Rowe J E, Rudolf P, Tjeng L H, Malic R A, Meigs G, Chen C T, Chen J, Plummer W 1992 Int. J. Mod. Phys. B 6 3909

    [20]

    Owens D, Aldao C, Poirier D, Weaver J 1995 Phys. Rev. B 51 17068

    [21]

    Hebard A F, Ruel R R, Eom C B 1996 Phys. Rev. B 54 14052

    [22]

    Dunn A W, Cotier B N, Nogaret A, Moriaty P, Beton P H 1997 Appl. Phys. Lett. 71 2937

    [23]

    Yang G, Wang W, Yan L, Lu H, Yang G, Chen Z 2002 Opt. Commun. 209 445

    [24]

    Kreibig V, Vollmer M 1995 Optical Properties of Metal Clusters (New York: Springer-Verlag Berlin Heidelberg)

    [25]

    Mazzoldi P, Arnold G W, Battaglin G., Gonella F, Haglund R F 1996 J. Nonlinear Opt. Phys. Mater. 5 285

    [26]

    Lee M, Kim T S, Choi Y S 1997 J. Non-Cryst. Solids 211 143

    [27]

    Compagnini G, Scalisi A A, Puglisi O 2002 Phys. Chem. Chem. Phys. 4 2787

    [28]

    Kppe R, Schackel H 1992 Heteroat. Chem. 3 329

    [29]

    Mehner T, Schnckel H, Jouany C, Gadea F X, Barthelat J C 1992 Heteroat. Chem. 3 333

    [30]

    Chenier J H B, Howard J A, Joly H A, Mile B, Timms P L 1990 J. Chem. Soc., Chem. Commun. 1990 581

    [31]

    Howard J A, Jones R, Tse J S, Tomietto M, Timms P L, Seely A J 1992 J. Phys. Chem. 96 9144

    [32]

    Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L 2003 Proc. Natl. Acad. Sci. U. S. A. 100 13549

    [33]

    Brongersma M 2003 Nat. Mater. 2 296

    [34]

    Hirsch L R, Jackson J B, Lee A, Halas N J 2003 Anal. Chem. 75 2377

    [35]

    Sun Q, Wang Q, Rao B K, Jena P 2004 Phys. Rev. Lett. 93 186803

    [36]

    Zhao G F, Zhi L L, Guo L J, Zeng Z 2007 J. Chem. Phys. 127

    [37]

    Huberg K P, Herzberg G 1989 Molecular Spectra and Molecular Structure-Ⅳ (New York: Van Nostrand-Reinhold)

    [38]

    Scherer J J, Paul J B, Collier C P, Saykally R J 1995 J. Chem. Phys. 102 5190

    [39]

    Lide D R 2000 CRC Handbook of Chemistry and Physics (New York: CRC)

    [40]

    Nayak S K, Rao B K, Khanna S N, Jena P 1998 J. Chem. Phys. 109 1245

    [41]

    Bromley S T, Zwijnenburg M A, Maschmeyer T 2003 Phys. Rev. Lett. 90 035502

    [42]

    Sun Q, Wang Q, Jena P 2004 Phys. Rev. Lett. 92 039601

    [43]

    Song J, Choi M 2002 Phys. Rev. B 65 241302

    [44]

    Erkoc S 2003 Chem. Phys. Lett. 369 605

  • [1] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [3] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [4] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [5] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [6] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [7] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [8] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [9] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [10] 孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜. 密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用. 物理学报, 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [15] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究. 物理学报, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [17] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [19] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  5233
  • PDF下载量:  797
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-23
  • 修回日期:  2009-12-16
  • 刊出日期:  2010-11-15

Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究

  • 1. 河南大学计算材料科学研究所,开封 475004
    基金项目: 国家自然科学基金(批准号: 10804027)资助的课题.

摘要: 运用密度泛函理论下的广义梯度近似和交换关联函数对Cu吸附(SiO2)n(n=1—8)团簇的几何结构、电荷分布、稳定性和电子性质进行了较详细的研究,结果表明: Cu原子易于和带有悬挂键的Si原子作用并形成"铜岛膜"; Cu吸附(SiO2)n团簇后Si原子失去电子能力减弱,O原子得到电子能力增强;Cu(SiO2)n(n

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回