搜索

x
中国物理学会期刊

分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步

CSTR: 32037.14.aps.60.100507

A finite-time stable theorem about fractional systems and finite-time synchronizing fractional super chaotic Lorenz systems

CSTR: 32037.14.aps.60.100507
PDF
导出引用
  • 研究了分数阶系统有限时间稳定性理论及分数阶混沌系统的同步问题.根据分数阶微分性质及分数阶系统稳定性理论,建立了分数阶系统有限时间稳定性理论并进行了证明.根据该理论设计控制器实现了分数阶超混沌Lorenz系统有限时间同步并运用数值仿真进行了验证.

     

    Finite-time stable theorem about fractional system and finite-time synchronizing fractional chaotic system are studied in this paper. A finite-time stable theorem is proposed and proved according to the properties of fractional equation. Using this theorem, fractional super chaotic Lorenz systems is synchronized in finite-time. Numerical simulation certifies the effectiveness of the theorem proposed in this paper.

     

    目录

    /

    返回文章
    返回