-
将去趋势波动分析法(detrended fluctuation analysis,DFA)和替代数据法相结合,同时引入启发式分割算法和卡方检验,提出了一种确定极端气候事件阈值的新方法,称为随机重排去趋势波动分析(stochastic re-sort detrended fluctuation analysis, S-DFA)方法. 同百分位阈值方法相比,S-DFA方法明确指出了极端事件和非极端事件之间的临界值. 基于中国气象局公布的中国165个国际交换站19612006年无缺测的逐日日平均气温资料,利用随机重排去趋势波动分析(S-DFA)方法计算并分析了中国极端低温事件阈值的空间分布特征,并对S-DFA方法在实际资料中的应用进行了检验. 从可预报性的角度给出了极端低温事件综合指标的定义. 这一综合指标将极端低温事件的发生频次和强度综合起来,且兼顾了不同地区各自特有的区域气候背景,进一步说明了综合指标定义的合理性. 基于极端低温事件综合指标的空间分布规律,将中国19612006年间极端低温事件分为四个不同等级的地区. 极端低温综合指标整体表现出下降趋势,在20世纪80年代初期之前综合指标的变化具有两个明显的准10年周期,而在这之后则一直处于下降趋势且大大低于平均值,直到90年代中期以后才再次上升至平均值附近.By combining detrended fluctuation analysis (DFA) method with surrogate data method, and using the Heuristic segmentation algorithm as well as Chi-Square statistics, we develop a new method to determine the threshold of extreme events, e.g. stochastically re-sorting detrended fluctuation analysis (S-DFA) method. The S-DFA method has a certain phsical background, when the occurrence rate of the data is small, then these data belong to little-probability events and they contain so little information about the dynamic system, the states corresponding to these data are abnormal states or extreme states of the system. When the occurrence rate of the data is large or even in distribution these data do not belong to little-probability events and they contain much information about the system, the states corresponding to these data are normal states of the system. Compared with the Percentile curves method, the S-DFA method gives the critical value between extreme event and non-extreame event, which is definite and unique. We also extensively validate the effectiveness of S-DFA method through extreme event detection.
-
Keywords:
- detrended fluctuation analysis /
- surrogate data /
- extreme event /
- threshold







下载: