搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子动力学模拟方法在非线性光学中的应用

赵珂 刘朋伟 韩广超

引用本文:
Citation:

分子动力学模拟方法在非线性光学中的应用

赵珂, 刘朋伟, 韩广超

Applications of molecular dynamics simulation in nonlinear optics

Zhao Ke, Liu Peng-Wei, Han Guang-Chao
PDF
导出引用
  • 有机分子非线性光学材料在频率转换、电光调制和双光子吸收等方面具有重要的应用.介绍了近年来分子动力学模拟方法在有机分子非线性光学性质理论研究中的主要应用,包括电场极化效应、局域场因子、非线性极化率和双光子吸收等.此外,结合最新的科研工作,介绍了分子动力学模拟方法在溶剂效应和聚集效应研究中发挥的重要作用.
    Organic nonlinear optical molecular materials have a number of important applications in frequency transformation, electrooptic modulation, two-photon absorption and so on. In this paper, we introduce the main applications of molecular dynamics simulation in theoretical study on nonlinear optical properties of organic molecules, including the electric field poling effects, the local field factors, the nonlinear susceptibilities, and the two-photon absorption. In addition, the important roles played by molecular dynamics simulation in the study of solvent and aggregation effects are also illustrated in combination with the recent research.
    • 基金项目: 国家自然科学基金(批准号:10904085,10974121)和山东省自然科学基金(批准号:ZR2010AZ002)资助的课题.
    [1]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73

    [2]

    Khler R H, Cao J, Zipfel W R, Webb W W, Hansen M R 1997 Science 276 2039

    [3]
    [4]

    Ehrlich J E, Wu X L, Lee I Y, Hu Z Y, Roeckel H, Marder S R, Perry J 1997 Opt. Lett. 22 1843

    [5]
    [6]
    [7]

    He G S, Zhao C F, Bhawalkar J D, Prasad P N 1995 Appl. Phys. Lett. 67 3703

    [8]

    Bhawalkar J D, He G S, Prasad P N 1996 Rep. Prog. Phys. 59 1041

    [9]
    [10]

    Parthenopouslos D A, Rentzepis P M 1989 Science 245 843

    [11]
    [12]

    Dvornikov A S, Rentzepis P M 1995 Opt. Commun. 119 341

    [13]
    [14]

    Chung S J, Kim K S, Lin T C, He G S, Swiatkiewicz J, Prasad P N 1999 J. Phys. Chem. B 103 10741

    [15]
    [16]
    [17]

    Chung S J, Lin T C, Kim K S, He G S, Swiatkiewicz J, Prasad P N, Baker G A, Bright F V 2001 Chem. Mater. 13 4071

    [18]
    [19]

    Adronov A, Frchet J M J, He G S, Kim K S, Chung S J, Swiatkiewicz J, Prasad P N 2000 Chem. Mater. 12 2838

    [20]
    [21]

    Drobizhev M, Karotki A, Rebane A, Spangler C W 2001 Opt. Lett. 26 1081

    [22]

    Yang W J, Kim D Y, Kim C H, Jeong M Y, Lee S K, Jeon S J, Cho B R 2004 Org. Lett. 6 1389

    [23]
    [24]
    [25]

    Meng F, Li B, Qian S, Chen K, Tian H 2004 Chem. Lett. 33 470

    [26]

    Drobizhev M, Karotki A, Dzenis Y, Rebane A, Suo Z, Spangler C W 2003 J. Phys. Chem. B 107 7540

    [27]
    [28]

    Porres L, Mongin O, Katan C, Charlot M, Pons T, Mertz J, Blanchard-Dense M 2004 Org. Lett. 6 47

    [29]
    [30]

    Humphrey J L, Kuciauskas D 2006 J. Am. Chem. Soc. 128 3902

    [31]
    [32]
    [33]

    Chen W, Li Z R, Wu D, Li Y, Sun C C, Gu F L 2005 J. Am. Chem. Soc. 127 10977

    [34]

    Albota M, Beljonne D, Bredas J L, Ehrlich J E, Fu J, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, Maughon D M, Perry J W, Rckel H, Rumi M, Subramaniam G, Webb W W, Wu X, Xu C 1998 Science 281 1653

    [35]
    [36]
    [37]

    Wang C K, Macak P, Luo Y, gren H 2001 J. Chem. Phys. 114 9813

    [38]
    [39]

    Macak P, Luo Y, Norman P, gren H 2000 J. Chem. Phys. 113 7055

    [40]
    [41]

    Nguyen K A, Rogers J E, Slagle J E, Day P N, Kannan R, Tan L S, Fleitz P A, Pachter R 2006 J. Phys. Chem. A 110 13172

    [42]
    [43]

    Nguyen K A, Day P N, Pachter R 2009 J. Phys. Chem. A 113 13943

    [44]

    Wang C K, Zhao K, Su Y, Ren Y, Zhao X, Luo Y 2003 J. Chem. Phys. 119 1208

    [45]
    [46]

    Sun Y H, Zhao K, Wang C K, Luo Y, Yan Y X, Tao X T, Jiang M H 2004 Chem. Phys. Lett. 394 176

    [47]
    [48]

    Zhao K, Ferrighi L, Frediani L, Wang C W, Luo Y 2007 J. Chem. Phys. 126 204509

    [49]
    [50]

    Zhao K, Sun Y H, Wang C K, Luo Y, Zhang X, Yu X Q, Jiang M H 2005 Acta Phys. Sin. 54 2662 (in Chinese) [赵 珂、孙元红、王传奎、罗 毅、张 献、于晓强、蒋民华 2005 物理学报 54 2662]

    [51]
    [52]

    Luo Y, Norman P, Macak P, gren H 2000 J. Phys. Chem. A 104 4718

    [53]
    [54]

    Tomasi J, Menncci B, Cammi R 2005 Chem. Rev. 105 2999

    [55]
    [56]

    Tomasi J, Persico M 1994 Chem. Rev. 94 2027

    [57]
    [58]

    Dalton L R, Harper W, Robinson B H 1997 Proc. Natl. Acad. Sci. USA 94 4842

    [59]
    [60]
    [61]

    Kim S, Ohulchanskyy T Y, Pudavar H E, Pandey R K, Prasad P N 2007 J. Am. Chem. Soc. 129 2669

    [62]

    DAvino G, Terenziani F, Painelli A 2006 J. Phys. Chem. B 110 25590

    [63]
    [64]

    Collini E, Ferrante C, Bozio R 2005 J. Phys. Chem. B 109 2

    [65]
    [66]
    [67]

    Collini E, Ferrante C, Bozio R, Lodib A, Ponterini G 2006 J. Mater. Chem. 16 1573

    [68]
    [69]

    Ray P C, Sainudeen Z 2006 J. Phys. Chem. A 110 12342

    [70]

    Sainudeen Z, Ray P C 2005 J. Phys. Chem. A 109 9095

    [71]
    [72]
    [73]

    Guillaume M, Botek E, Champagne B, Castet F, Ducasse L 2004 J. Chem. Phys. 121 7390

    [74]

    Ray P C, Leszczynski J 2006 Chem. Phys. Lett. 419 578

    [75]
    [76]
    [77]

    Datta A, Pati S K 2003 J. Chem. Phys. 118 8420

    [78]
    [79]

    Beljonne D, Wenseleers W, Zojer E, Vogel H, Pond S J K, Perry J W, Marder S R, Bredas J L 2002 Adv. Funct. Mater. 12 631

    [80]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porres L, Pons T, Mertz J, Tretiak S, Blanchard-Desce M 2005 J. Phys. Chem. A 109 3024

    [81]
    [82]
    [83]

    Terenziani F, Morone M, Gmouh S, Blanchard-Desce M 2006 Chem. Phys. Chem. 7 685

    [84]
    [85]

    Leach A R 2001 Molecular Modeling Principles and Applications (2nd ed) (Harlow: Pearson Education Limited) pp353-393

    [86]

    Kim W K, Hayden L M 1999 J. Chem. Phys. 111 5212

    [87]
    [88]
    [89]

    Tu Y, Luo Y, gren H 2005 J. Phys. Chem. B 109 16730

    [90]
    [91]

    Tu Y, Luo Y, gren H 2006 J. Phys. Chem. B 110 8971

    [92]

    Tu Y, Zhang Q, gren H 2007 J. Phys. Chem. B 111 3591

    [93]
    [94]

    Zhang Q, Tu Y, Tian H, gren H 2007 J. Phys. Chem. B 111 10645

    [95]
    [96]
    [97]

    Reis H, Makowska-Janusika M, Papadopoulos M G 2004 J. Phys. Chem. B 108 8931

    [98]

    Makowska-Janusik M, Reis H, Papadopoulos M G, Economou I G, Zacharopoulos N 2004 J. Phys. Chem. B 108 588

    [99]
    [100]
    [101]

    Janssen R H C, Bomont J M, Theodorou D N, Raptis S, Papadopoulos M G 1999 J. Chem. Phys. 110 6463

    [102]
    [103]

    Reis H, Papadopoulos M G, Theodorou D N 2001 J. Chem. Phys. 114 876

    [104]

    Zhang Q, Tu Y, Tian H, gren H 2007 J. Chem. Phys. 127 014501

    [105]
    [106]

    Nielsena C B, Christiansenc O, Mikkelsen K V, Kongstede J 2007 J. Chem. Phys. 126 154112

    [107]
    [108]

    Yamaguchi Y, Yokomichi Y, Yokoyama S, Mashiko S 2001 J. Mol. Struct. (Theochem.) 545 187

    [109]
    [110]
    [111]

    Murugan N A, Kongsted J, Rinkevicius Z, gren H 2010 Proc. Natl. Acad. Sci. USA 107 16453

    [112]
    [113]

    Zhao K, Tu Y, Luo Y 2009 J. Phys. Chem. B 113 10271

    [114]

    Liu K, Wang Y H, Tu Y, gren H, Luo Y 2008 J. Phys. Chem. B 112 4387

    [115]
    [116]
    [117]

    Paterson M J, Kongsted J, Christiansen O, Mikkelsend K V, Nielse C B 2006 J. Chem. Phys. 125 184501

    [118]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814

    [119]
    [120]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471

    [121]
    [122]

    Murugan N A, Kongsted J, Rinkevicius Z, Aidas K, gren H 2010 J. Phys. Chem. B 114 13349

    [123]
    [124]
    [125]

    Murugan N A, Kongsted J, Rinkevicius Z, gren H 2011 Phys. Chem. Chem. Phys. 13 1290

    [126]

    Murugan N A, Jha P C, Rinkevicius Z, Ruud K, gren H 2010 J. Chem. Phys. 132 234508

    [127]
    [128]
    [129]

    Meng S, Ma J 2008 J. Phys. Chem. B 112 4313

    [130]
    [131]

    Meng S, Ma J, Jiang Y S 2007 J. Phys. Chem. B 111 4128

    [132]

    Wrthner F, Schmidt J, Stolte M, Wortmann R 2006 Angew. Chem. Int. Ed. 45 3842

    [133]
  • [1]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73

    [2]

    Khler R H, Cao J, Zipfel W R, Webb W W, Hansen M R 1997 Science 276 2039

    [3]
    [4]

    Ehrlich J E, Wu X L, Lee I Y, Hu Z Y, Roeckel H, Marder S R, Perry J 1997 Opt. Lett. 22 1843

    [5]
    [6]
    [7]

    He G S, Zhao C F, Bhawalkar J D, Prasad P N 1995 Appl. Phys. Lett. 67 3703

    [8]

    Bhawalkar J D, He G S, Prasad P N 1996 Rep. Prog. Phys. 59 1041

    [9]
    [10]

    Parthenopouslos D A, Rentzepis P M 1989 Science 245 843

    [11]
    [12]

    Dvornikov A S, Rentzepis P M 1995 Opt. Commun. 119 341

    [13]
    [14]

    Chung S J, Kim K S, Lin T C, He G S, Swiatkiewicz J, Prasad P N 1999 J. Phys. Chem. B 103 10741

    [15]
    [16]
    [17]

    Chung S J, Lin T C, Kim K S, He G S, Swiatkiewicz J, Prasad P N, Baker G A, Bright F V 2001 Chem. Mater. 13 4071

    [18]
    [19]

    Adronov A, Frchet J M J, He G S, Kim K S, Chung S J, Swiatkiewicz J, Prasad P N 2000 Chem. Mater. 12 2838

    [20]
    [21]

    Drobizhev M, Karotki A, Rebane A, Spangler C W 2001 Opt. Lett. 26 1081

    [22]

    Yang W J, Kim D Y, Kim C H, Jeong M Y, Lee S K, Jeon S J, Cho B R 2004 Org. Lett. 6 1389

    [23]
    [24]
    [25]

    Meng F, Li B, Qian S, Chen K, Tian H 2004 Chem. Lett. 33 470

    [26]

    Drobizhev M, Karotki A, Dzenis Y, Rebane A, Suo Z, Spangler C W 2003 J. Phys. Chem. B 107 7540

    [27]
    [28]

    Porres L, Mongin O, Katan C, Charlot M, Pons T, Mertz J, Blanchard-Dense M 2004 Org. Lett. 6 47

    [29]
    [30]

    Humphrey J L, Kuciauskas D 2006 J. Am. Chem. Soc. 128 3902

    [31]
    [32]
    [33]

    Chen W, Li Z R, Wu D, Li Y, Sun C C, Gu F L 2005 J. Am. Chem. Soc. 127 10977

    [34]

    Albota M, Beljonne D, Bredas J L, Ehrlich J E, Fu J, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, Maughon D M, Perry J W, Rckel H, Rumi M, Subramaniam G, Webb W W, Wu X, Xu C 1998 Science 281 1653

    [35]
    [36]
    [37]

    Wang C K, Macak P, Luo Y, gren H 2001 J. Chem. Phys. 114 9813

    [38]
    [39]

    Macak P, Luo Y, Norman P, gren H 2000 J. Chem. Phys. 113 7055

    [40]
    [41]

    Nguyen K A, Rogers J E, Slagle J E, Day P N, Kannan R, Tan L S, Fleitz P A, Pachter R 2006 J. Phys. Chem. A 110 13172

    [42]
    [43]

    Nguyen K A, Day P N, Pachter R 2009 J. Phys. Chem. A 113 13943

    [44]

    Wang C K, Zhao K, Su Y, Ren Y, Zhao X, Luo Y 2003 J. Chem. Phys. 119 1208

    [45]
    [46]

    Sun Y H, Zhao K, Wang C K, Luo Y, Yan Y X, Tao X T, Jiang M H 2004 Chem. Phys. Lett. 394 176

    [47]
    [48]

    Zhao K, Ferrighi L, Frediani L, Wang C W, Luo Y 2007 J. Chem. Phys. 126 204509

    [49]
    [50]

    Zhao K, Sun Y H, Wang C K, Luo Y, Zhang X, Yu X Q, Jiang M H 2005 Acta Phys. Sin. 54 2662 (in Chinese) [赵 珂、孙元红、王传奎、罗 毅、张 献、于晓强、蒋民华 2005 物理学报 54 2662]

    [51]
    [52]

    Luo Y, Norman P, Macak P, gren H 2000 J. Phys. Chem. A 104 4718

    [53]
    [54]

    Tomasi J, Menncci B, Cammi R 2005 Chem. Rev. 105 2999

    [55]
    [56]

    Tomasi J, Persico M 1994 Chem. Rev. 94 2027

    [57]
    [58]

    Dalton L R, Harper W, Robinson B H 1997 Proc. Natl. Acad. Sci. USA 94 4842

    [59]
    [60]
    [61]

    Kim S, Ohulchanskyy T Y, Pudavar H E, Pandey R K, Prasad P N 2007 J. Am. Chem. Soc. 129 2669

    [62]

    DAvino G, Terenziani F, Painelli A 2006 J. Phys. Chem. B 110 25590

    [63]
    [64]

    Collini E, Ferrante C, Bozio R 2005 J. Phys. Chem. B 109 2

    [65]
    [66]
    [67]

    Collini E, Ferrante C, Bozio R, Lodib A, Ponterini G 2006 J. Mater. Chem. 16 1573

    [68]
    [69]

    Ray P C, Sainudeen Z 2006 J. Phys. Chem. A 110 12342

    [70]

    Sainudeen Z, Ray P C 2005 J. Phys. Chem. A 109 9095

    [71]
    [72]
    [73]

    Guillaume M, Botek E, Champagne B, Castet F, Ducasse L 2004 J. Chem. Phys. 121 7390

    [74]

    Ray P C, Leszczynski J 2006 Chem. Phys. Lett. 419 578

    [75]
    [76]
    [77]

    Datta A, Pati S K 2003 J. Chem. Phys. 118 8420

    [78]
    [79]

    Beljonne D, Wenseleers W, Zojer E, Vogel H, Pond S J K, Perry J W, Marder S R, Bredas J L 2002 Adv. Funct. Mater. 12 631

    [80]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porres L, Pons T, Mertz J, Tretiak S, Blanchard-Desce M 2005 J. Phys. Chem. A 109 3024

    [81]
    [82]
    [83]

    Terenziani F, Morone M, Gmouh S, Blanchard-Desce M 2006 Chem. Phys. Chem. 7 685

    [84]
    [85]

    Leach A R 2001 Molecular Modeling Principles and Applications (2nd ed) (Harlow: Pearson Education Limited) pp353-393

    [86]

    Kim W K, Hayden L M 1999 J. Chem. Phys. 111 5212

    [87]
    [88]
    [89]

    Tu Y, Luo Y, gren H 2005 J. Phys. Chem. B 109 16730

    [90]
    [91]

    Tu Y, Luo Y, gren H 2006 J. Phys. Chem. B 110 8971

    [92]

    Tu Y, Zhang Q, gren H 2007 J. Phys. Chem. B 111 3591

    [93]
    [94]

    Zhang Q, Tu Y, Tian H, gren H 2007 J. Phys. Chem. B 111 10645

    [95]
    [96]
    [97]

    Reis H, Makowska-Janusika M, Papadopoulos M G 2004 J. Phys. Chem. B 108 8931

    [98]

    Makowska-Janusik M, Reis H, Papadopoulos M G, Economou I G, Zacharopoulos N 2004 J. Phys. Chem. B 108 588

    [99]
    [100]
    [101]

    Janssen R H C, Bomont J M, Theodorou D N, Raptis S, Papadopoulos M G 1999 J. Chem. Phys. 110 6463

    [102]
    [103]

    Reis H, Papadopoulos M G, Theodorou D N 2001 J. Chem. Phys. 114 876

    [104]

    Zhang Q, Tu Y, Tian H, gren H 2007 J. Chem. Phys. 127 014501

    [105]
    [106]

    Nielsena C B, Christiansenc O, Mikkelsen K V, Kongstede J 2007 J. Chem. Phys. 126 154112

    [107]
    [108]

    Yamaguchi Y, Yokomichi Y, Yokoyama S, Mashiko S 2001 J. Mol. Struct. (Theochem.) 545 187

    [109]
    [110]
    [111]

    Murugan N A, Kongsted J, Rinkevicius Z, gren H 2010 Proc. Natl. Acad. Sci. USA 107 16453

    [112]
    [113]

    Zhao K, Tu Y, Luo Y 2009 J. Phys. Chem. B 113 10271

    [114]

    Liu K, Wang Y H, Tu Y, gren H, Luo Y 2008 J. Phys. Chem. B 112 4387

    [115]
    [116]
    [117]

    Paterson M J, Kongsted J, Christiansen O, Mikkelsend K V, Nielse C B 2006 J. Chem. Phys. 125 184501

    [118]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814

    [119]
    [120]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471

    [121]
    [122]

    Murugan N A, Kongsted J, Rinkevicius Z, Aidas K, gren H 2010 J. Phys. Chem. B 114 13349

    [123]
    [124]
    [125]

    Murugan N A, Kongsted J, Rinkevicius Z, gren H 2011 Phys. Chem. Chem. Phys. 13 1290

    [126]

    Murugan N A, Jha P C, Rinkevicius Z, Ruud K, gren H 2010 J. Chem. Phys. 132 234508

    [127]
    [128]
    [129]

    Meng S, Ma J 2008 J. Phys. Chem. B 112 4313

    [130]
    [131]

    Meng S, Ma J, Jiang Y S 2007 J. Phys. Chem. B 111 4128

    [132]

    Wrthner F, Schmidt J, Stolte M, Wortmann R 2006 Angew. Chem. Int. Ed. 45 3842

    [133]
  • [1] 沈环, 华林强, 魏政荣. 尿嘧啶激发态动力学溶剂效应的飞秒瞬态吸收光谱研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220515
    [2] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [3] 赵珂, 宋军, 张瀚. 给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响. 物理学报, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [4] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [5] 杨哲, 张祥, 肖思, 何军, 顾兵. 双光子激发ZnSe自由载流子超快动力学研究. 物理学报, 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [6] 武香莲, 赵珂, 贾海洪, 王富青. 以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性. 物理学报, 2015, 64(23): 233301. doi: 10.7498/aps.64.233301
    [7] 吴咏玲, 刘天元, 孙成林, 曲冠男, 里佐威. 分子极性对类胡萝卜素共振拉曼光谱的影响. 物理学报, 2013, 62(3): 037801. doi: 10.7498/aps.62.037801
    [8] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响. 物理学报, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [9] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱. 物理学报, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [10] 郑加金, 陆云清, 李培丽. 激发态分子内质子转移有机分子HBT的三阶非线性光学特性. 物理学报, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [11] 李明雪, 韩奎, 李海鹏, 黄志敏, 钟琪, 童星, 吴琼华. 溶剂中一、二维电荷转移分子二阶非线性光学性质理论研究. 物理学报, 2010, 59(3): 1809-1815. doi: 10.7498/aps.59.1809
    [12] 朱菁, 吕昌贵, 洪旭升, 崔一平. 分子一阶超极化率溶剂效应的理论研究. 物理学报, 2010, 59(4): 2850-2854. doi: 10.7498/aps.59.2850
    [13] 孙元红, 王传奎. 新型多共轭链有机分子双光子吸收特性的理论研究. 物理学报, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [14] 张然, 何军, 彭增辉, 宣丽. 向列相液晶nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8)的旋转黏度及其奇偶效应的分子动力学模拟. 物理学报, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [15] 苗泉, 赵鹏, 孙玉萍, 刘纪彩, 王传奎. 超短脉冲激光在DBASVP分子中传播时的双光子面积演化和光限幅效应. 物理学报, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [16] 韩清珍, 耿春宇, 赵月红, 戚传松, 温 浩. 溶剂对镍连二硫烯与乙烯反应的影响. 物理学报, 2008, 57(1): 96-102. doi: 10.7498/aps.57.96
    [17] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应. 物理学报, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [18] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [19] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响. 物理学报, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [20] 张衍亮, 江 丽, 钮月萍, 孙真荣, 丁良恩, 王祖赓. Na2中由一对耦合能级相干叠加导致的双光子吸收的干涉增强效应. 物理学报, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
计量
  • 文章访问数:  4593
  • PDF下载量:  884
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-18
  • 修回日期:  2011-07-01
  • 刊出日期:  2011-06-05

分子动力学模拟方法在非线性光学中的应用

  • 1. 山东师范大学物理与电子科学学院,济南 250014
    基金项目: 国家自然科学基金(批准号:10904085,10974121)和山东省自然科学基金(批准号:ZR2010AZ002)资助的课题.

摘要: 有机分子非线性光学材料在频率转换、电光调制和双光子吸收等方面具有重要的应用.介绍了近年来分子动力学模拟方法在有机分子非线性光学性质理论研究中的主要应用,包括电场极化效应、局域场因子、非线性极化率和双光子吸收等.此外,结合最新的科研工作,介绍了分子动力学模拟方法在溶剂效应和聚集效应研究中发挥的重要作用.

English Abstract

参考文献 (133)

目录

    /

    返回文章
    返回