-
采用水热法合成了不同粒径的NaLa(MoO4)2∶Eu3+微晶.通过调节乙二醇浓度和反应时间,研究了NaLa(MoO4)2∶Eu3+微晶的形貌演变过程,在水热条件下180 ℃反应16 h获得了均一梭子形NaLa(MoO4)2∶Eu3+微晶,其晶粒长度约为2.0 m.荧光光谱分析表明,Eu3+取代了NaLa(MoO4)2中La3+的格位, Eu3+在613 nm处红光发射(5D07F2跃迁)的浓度猝灭机理是电偶极-电四极相互作用,并发生了Eu3+( 5D1 ) + Eu3+(7F0 ) Eu3+( 5D0 ) + Eu3+(7F3) 交叉弛豫,由此导致浓度猝灭.Eu3+ doped NaLa(MoO4)2 microcrystals with different sizes are synthesized by a mild hydrothermal method, and the morphologies of the microcrystals can be easily controlled by adjusting the volume ratio of ethylene glycol to water and the aging time. Uniform high-quality shuttle-like microcrystals with an average length of 2.0 m are obtained under the hydrothermal condition of 180℃ for 16 h. From the emission spectra of NaLa(MoO4)2∶Eu3+ microcrystals, it is concluded that the dopant Eu3+ ion occupies a La3+ site. It is indicated that the concentration quenching of the emission peak at 613 nm of Eu3+ is ascribed to the electric dipole-electric quadrupole interaction, and the cross relaxation process of Eu3+(5D1 ) + Eu3+(7F0 ) Eu3+( 5D0 ) + Eu3+(7F3) appear.
-
Keywords:
- molybdate /
- hydrothermal synthesis /
- rare-earth ions /
- luminescence
[1] Kuzmicheva G M, Lis D A, Subbotin K A, Rybakov V B, Zharikov E V 2005 J. Cryst. Growth 275 1835
[2] Han Y F, Li J Z, Chen Z Q 2009 J. Synth. Cryst. 38 191(in Chinese)[韩永飞、李景照、陈振强 2009 人工晶体学报 38 191]
[3] [4] Sun J Y, Lan Y J, Xia Z G, Du H Y 2011 Opt. Mater. 33 576
[5] [6] [7] Wang W S 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology)(in Chinese) [王文寿 2009 博士学位论文 (哈尔滨:哈尔滨工业大学)]
[8] Zhang P C, Chen H J, Qian X F 2007 Chem. World 48 475 (in Chinese)[张鹏翀、陈虹锦、钱雪峰 2007化学世界 48 475]
[9] [10] [11] Feldmann C, Metzmacher C 2001 Mater. Chem. 11 2603
[12] [13] Zhang X, Ai Z, Jia F, Zhang L 2008 Phys. Chem. C 112 747
[14] Sun J Y, Du H Y 2005 Solid Luminescence Materials (Beijing: Chemical Industry Press) pp232-235(in Chinese)[孙家跃、杜海燕 2005 固体发光材料 (北京:化学工业出版社) 第232-235页]
[15] [16] Zhai Y Q, Wang B, Feng X H 2010 J. Synth. Cryst. 39 906 (in Chinese)[翟永清、王 波、冯欣华 2010 人工晶体学报 39 906]
[17] [18] [19] Yang Z P, Ma X, Zhao P P, Song Z F 2010 Acta Phys. Sin. 59 5387 (in Chinese)[杨志平、马 欣、赵盼盼、宋兆丰 2010 物理学报 59 5387]
[20] Li D, L S Z, Chen B J, Wang H Y, Tang B, Zhang J H, Hou S G, Huang S H 2001 Acta Phys. Sin. 50 933 (in Chinese)[李丹、吕少哲、陈宝玖、王海宇、唐 波、张家骅、侯尚公、黄世华 2001 物理学报 50 933]
[21] -
[1] Kuzmicheva G M, Lis D A, Subbotin K A, Rybakov V B, Zharikov E V 2005 J. Cryst. Growth 275 1835
[2] Han Y F, Li J Z, Chen Z Q 2009 J. Synth. Cryst. 38 191(in Chinese)[韩永飞、李景照、陈振强 2009 人工晶体学报 38 191]
[3] [4] Sun J Y, Lan Y J, Xia Z G, Du H Y 2011 Opt. Mater. 33 576
[5] [6] [7] Wang W S 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology)(in Chinese) [王文寿 2009 博士学位论文 (哈尔滨:哈尔滨工业大学)]
[8] Zhang P C, Chen H J, Qian X F 2007 Chem. World 48 475 (in Chinese)[张鹏翀、陈虹锦、钱雪峰 2007化学世界 48 475]
[9] [10] [11] Feldmann C, Metzmacher C 2001 Mater. Chem. 11 2603
[12] [13] Zhang X, Ai Z, Jia F, Zhang L 2008 Phys. Chem. C 112 747
[14] Sun J Y, Du H Y 2005 Solid Luminescence Materials (Beijing: Chemical Industry Press) pp232-235(in Chinese)[孙家跃、杜海燕 2005 固体发光材料 (北京:化学工业出版社) 第232-235页]
[15] [16] Zhai Y Q, Wang B, Feng X H 2010 J. Synth. Cryst. 39 906 (in Chinese)[翟永清、王 波、冯欣华 2010 人工晶体学报 39 906]
[17] [18] [19] Yang Z P, Ma X, Zhao P P, Song Z F 2010 Acta Phys. Sin. 59 5387 (in Chinese)[杨志平、马 欣、赵盼盼、宋兆丰 2010 物理学报 59 5387]
[20] Li D, L S Z, Chen B J, Wang H Y, Tang B, Zhang J H, Hou S G, Huang S H 2001 Acta Phys. Sin. 50 933 (in Chinese)[李丹、吕少哲、陈宝玖、王海宇、唐 波、张家骅、侯尚公、黄世华 2001 物理学报 50 933]
[21]
计量
- 文章访问数: 7864
- PDF下载量: 703
- 被引次数: 0