搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外磁场与温度对低温超导光子晶体低频禁带特性的影响

李春早 刘少斌 孔祥鲲 卞博锐 张学勇

引用本文:
Citation:

外磁场与温度对低温超导光子晶体低频禁带特性的影响

李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇

Effects of external magnetic field and temperature on low frequency photonic band width in cryogenic superconducting photonic crystals

Li Chun-Zao, Liu Shao-Bin, Kong Xiang-Kun, Bian Bo-Rui, Zhang Xue-Yong
PDF
导出引用
  • 文中用传输矩阵法(TMM)分析了TM波垂直入时,超导光子晶体的低频禁带特性,并讨论了外磁场与温度对禁带的影响.分析结果表明:超导光子晶体存在频率从0开始的低频禁带;当没有外磁场作用时,由于超导中正常态电子的影响,低频禁带的截止频率与温度无关;有外磁场作用时,温度才对截止频率具有可调性.外加恒定磁场时,低频禁带的截止频率随温度升高而减小;而在正常态电子的作用下,温度对处在超导态超导光子晶体禁带截止频率的调节范围相对忽略正常态电子情况下减小.恒温下,通过调节外磁场来控制带隙时,正常态电子的贡献很小可忽略不计;外磁场强度增大禁带截止频率减小.当超导体完全处于正常态时,低频禁带消失.
    Superconducting photonic crystals are artificial periodic structures composed of superconductors and dielectric structures. In this paper, the transfer matrix method(TMM) is used to study the transmittance of one-dimensional photonic crystals consisting of cryogenic superconductor and lossless dielectric for TM wave. It is shown that a stop band staring from zero frequency can be apparently observed, whose cutoff frequency is adjusted by varying the temperature and the magnetic field. However, because of the contribution of the normal conducting electrons (NCEs) , taking no account of external magnetic field, the width of the low frequency photonic band gap (PBG) is no longer influenced by the temperature of the superconductor. The cutoff frequency of PBG adjusted by the temperature and the external magnetic field with the contribution of NCEs are compared with those obtained by neglecting them. However, when superconductors are in a normal state, the low frequency PBG of photonic crystals disappears.
    • 基金项目: 国家自然科学基金(批准号: 60971122) 毫米波国家重点实验室开放基金(批准号: K201103) 航空科学基金(批准号: 2009ZA52008)资助的课题.
    • Funds: Project supported by the National Natural Science and Foundation of China (Grant No. 60971122), the Aviation Science Foundation (Grant No.2009ZA52008), and the Open Research Program in Chinas State Key Laboratory of Millimeter Waves (Grant No. K201103).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]
    [3]

    John S 1987 Phys. Rev. Lett. 58 2486

    [4]
    [5]

    Bauer J, John S 2007 Appl. Phys. Lett. 90 261111

    [6]

    Plihal M, Maradudin A A 1991 Phys. Rev. B 44 8565

    [7]
    [8]

    Xu C, Hu X, Li Y Z, Liu X H, Fu R T, Zi J 2003 Phys. Rev. B 68193201

    [9]
    [10]

    Moreno E, Erni D, Hafner C 2002 Phys. Rev. B 65 155120

    [11]
    [12]
    [13]

    Yoshino K, Shimoda Y, Kawagishi Y, Nakayama K, Ozaki M 1999 Appl. Phys. Lett. 75 932

    [14]
    [15]

    Guo B 2009 Phys. Plasmas. 16 04350

    [16]
    [17]

    Liu S B, Zhu C X, Yuan N C 2005 Acta Phys. Sin. 54 2804 (in Chinese) 刘少斌, 朱传喜, 袁乃昌,2005 物理学报,[54 2804]

    [18]
    [19]

    Ma L, Zhang H F, Liu S B 2008 Acta Phys. Sin. 57 5089 (in Chinese) [马力, 章海锋, 刘少斌,2008,物理学报,{\bf 57 5089]

    [20]

    Zhang H F, Ma L, Liu S B 2009 Acta Phys. Sin. 58 1071 (in Chinese) [章海锋, 马力, 刘少斌,2009,物理学报,{\bf58 1071]

    [21]
    [22]

    Aly A H, Ryu S W, Hsu H T, Wu C J 2009 Mater. Chem. Phys. 113 382

    [23]
    [24]
    [25]

    Lee H M, Wu J C 2010 J. Appl. Phys. 107 09E149

    [26]
    [27]

    Ooi C H R, Kam C H 2010 J. Opt. Soc. Am. B 27 458

    [28]

    Wang S Y, Liu S B, Li L W 2010 Chin. Phys. B 19 084101

    [29]
    [30]

    Thapa K, Srivastava S, Tiwari S 2010 Journal of Superconductivity and Novel Magnetism 23 517

    [31]
    [32]

    Hsu H T, Kuo F Y, Wu C J 2010 J. Appl. Phys. 107 053912

    [33]
    [34]
    [35]

    Wu C J, Chen M S, Yang T J 2005 Physica C: Superconductivity 432 133

    [36]

    Qin L M, Yang Z Q, Lan F, Li D Z 2010 Chin. Phys. B 19 034210

    [37]
    [38]
    [39]

    Wang J, Yuan C W, Tang F Q 2005 Chin. Phys. 14 1581

    [40]

    Quan X L, Yang X B 2009 Chin. Phys. B 18 5313

    [41]
    [42]

    Tinkham M 1996 Introduction to Superconductivity 2nd edn (New York: McGraw-Hill)

    [43]
    [44]
    [45]

    Takeda H, Yoshino K 2003 Phys. Rev. B 67 245109

    [46]

    Matsuda Y, Gaifullin M B, Kumagai K, Kadowaki K, Mochiku T 1995 Phys. Rev. Lett. 75 4512

    [47]
    [48]
    [49]

    Raymond Ooi C H, Au Yeung T C, Kam C H, Lim T K 2000 Phys.Rev. B 61 5920

    [50]

    Tachiki M, Koyama T, Takahashi S 1994 Phys. Rev. B 50 7065

    [51]
    [52]
    [53]

    Zhang H Y 2009 Superconductor Physics 3rd edn (Heifei: University of Science and Technology of China Press) p9, 21 (in Chinese)[张裕恒 2009 超导物理 (第三版)(合肥: 中国科技大学出版社) 第9, 21页]

    [54]

    Kong X K, Liu S B, Zhang H F, Li C Z 2010 Phys. Plasmas. 17 103506

    [55]
    [56]
    [57]

    Fang Y T, Ouyang Z B 2009 J. Opt. A: Pure, Appl. Opt. 11 045103

    [58]

    Wang H, Li Y P 2001 Acta Phys. Sin. 50 2173 (in Chinese)[王辉, 李永平 2001 物理学报 50 2173]

    [59]
    [60]

    Kautz R L 1978 J. Appl. Phys. 49 308

    [61]
    [62]
    [63]

    Li C Z, Liu S B, Kong X K, Bian B R, Zhang X Y 2011 Applied Optics 50 2370

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]
    [3]

    John S 1987 Phys. Rev. Lett. 58 2486

    [4]
    [5]

    Bauer J, John S 2007 Appl. Phys. Lett. 90 261111

    [6]

    Plihal M, Maradudin A A 1991 Phys. Rev. B 44 8565

    [7]
    [8]

    Xu C, Hu X, Li Y Z, Liu X H, Fu R T, Zi J 2003 Phys. Rev. B 68193201

    [9]
    [10]

    Moreno E, Erni D, Hafner C 2002 Phys. Rev. B 65 155120

    [11]
    [12]
    [13]

    Yoshino K, Shimoda Y, Kawagishi Y, Nakayama K, Ozaki M 1999 Appl. Phys. Lett. 75 932

    [14]
    [15]

    Guo B 2009 Phys. Plasmas. 16 04350

    [16]
    [17]

    Liu S B, Zhu C X, Yuan N C 2005 Acta Phys. Sin. 54 2804 (in Chinese) 刘少斌, 朱传喜, 袁乃昌,2005 物理学报,[54 2804]

    [18]
    [19]

    Ma L, Zhang H F, Liu S B 2008 Acta Phys. Sin. 57 5089 (in Chinese) [马力, 章海锋, 刘少斌,2008,物理学报,{\bf 57 5089]

    [20]

    Zhang H F, Ma L, Liu S B 2009 Acta Phys. Sin. 58 1071 (in Chinese) [章海锋, 马力, 刘少斌,2009,物理学报,{\bf58 1071]

    [21]
    [22]

    Aly A H, Ryu S W, Hsu H T, Wu C J 2009 Mater. Chem. Phys. 113 382

    [23]
    [24]
    [25]

    Lee H M, Wu J C 2010 J. Appl. Phys. 107 09E149

    [26]
    [27]

    Ooi C H R, Kam C H 2010 J. Opt. Soc. Am. B 27 458

    [28]

    Wang S Y, Liu S B, Li L W 2010 Chin. Phys. B 19 084101

    [29]
    [30]

    Thapa K, Srivastava S, Tiwari S 2010 Journal of Superconductivity and Novel Magnetism 23 517

    [31]
    [32]

    Hsu H T, Kuo F Y, Wu C J 2010 J. Appl. Phys. 107 053912

    [33]
    [34]
    [35]

    Wu C J, Chen M S, Yang T J 2005 Physica C: Superconductivity 432 133

    [36]

    Qin L M, Yang Z Q, Lan F, Li D Z 2010 Chin. Phys. B 19 034210

    [37]
    [38]
    [39]

    Wang J, Yuan C W, Tang F Q 2005 Chin. Phys. 14 1581

    [40]

    Quan X L, Yang X B 2009 Chin. Phys. B 18 5313

    [41]
    [42]

    Tinkham M 1996 Introduction to Superconductivity 2nd edn (New York: McGraw-Hill)

    [43]
    [44]
    [45]

    Takeda H, Yoshino K 2003 Phys. Rev. B 67 245109

    [46]

    Matsuda Y, Gaifullin M B, Kumagai K, Kadowaki K, Mochiku T 1995 Phys. Rev. Lett. 75 4512

    [47]
    [48]
    [49]

    Raymond Ooi C H, Au Yeung T C, Kam C H, Lim T K 2000 Phys.Rev. B 61 5920

    [50]

    Tachiki M, Koyama T, Takahashi S 1994 Phys. Rev. B 50 7065

    [51]
    [52]
    [53]

    Zhang H Y 2009 Superconductor Physics 3rd edn (Heifei: University of Science and Technology of China Press) p9, 21 (in Chinese)[张裕恒 2009 超导物理 (第三版)(合肥: 中国科技大学出版社) 第9, 21页]

    [54]

    Kong X K, Liu S B, Zhang H F, Li C Z 2010 Phys. Plasmas. 17 103506

    [55]
    [56]
    [57]

    Fang Y T, Ouyang Z B 2009 J. Opt. A: Pure, Appl. Opt. 11 045103

    [58]

    Wang H, Li Y P 2001 Acta Phys. Sin. 50 2173 (in Chinese)[王辉, 李永平 2001 物理学报 50 2173]

    [59]
    [60]

    Kautz R L 1978 J. Appl. Phys. 49 308

    [61]
    [62]
    [63]

    Li C Z, Liu S B, Kong X K, Bian B R, Zhang X Y 2011 Applied Optics 50 2370

  • [1] 易红霞, 肖刘, 苏小保. 传输矩阵法在行波管内部反射引起的增益波动计算中的应用. 物理学报, 2016, 65(12): 128401. doi: 10.7498/aps.65.128401
    [2] 戚志明, 梁文耀. 表层厚度渐变一维耦合腔光子晶体的反射相位特性及其应用. 物理学报, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [3] 陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁. 对称双缺陷光子晶体的可调谐滤波特性分析. 物理学报, 2014, 63(15): 154207. doi: 10.7498/aps.63.154207
    [4] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [5] 沈娟娟, 何兴道, 刘彬, 李淑静. 基于太极形介质柱六角光子晶体禁带特性研究. 物理学报, 2013, 62(8): 084213. doi: 10.7498/aps.62.084213
    [6] 何正红, 叶志成, 李争光, 崔晴宇, 苏翼凯. 复合周期的介质-液晶光子晶体研究. 物理学报, 2011, 60(3): 034213. doi: 10.7498/aps.60.034213
    [7] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析. 物理学报, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [8] 杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟. 介质柱型二维Triangular格子光子晶体的禁带特性. 物理学报, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [9] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究. 物理学报, 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [10] 崔战友, 陈天宁, 许锐奇, 吴九汇. 二维开缝金属圆管带隙结构禁带特性中缝参数的研究. 物理学报, 2009, 58(7): 4752-4759. doi: 10.7498/aps.58.4752
    [11] 童 凯, 崔卫卫, 汪梅婷, 李志全. 一维缺陷光子晶体温度的测量. 物理学报, 2008, 57(2): 762-766. doi: 10.7498/aps.57.762
    [12] 刘 欢, 姚建铨, 李恩邦. 激光全息法制作二、三维光子晶体的模拟计算及禁带分析. 物理学报, 2006, 55(5): 2286-2292. doi: 10.7498/aps.55.2286
    [13] 童元伟, 张冶文, 赫 丽, 李宏强, 陈 鸿. 用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构. 物理学报, 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [14] 顾建忠, 林水洋, 王 闯, 喻筱静, 孙晓玮. 基于补偿型微带谐振单元的一维光子带隙结构. 物理学报, 2006, 55(8): 4176-4180. doi: 10.7498/aps.55.4176
    [15] 郝保良, 刘濮鲲, 唐昌建. 二维非正交坐标斜方格金属光子带隙结构. 物理学报, 2006, 55(4): 1862-1867. doi: 10.7498/aps.55.1862
    [16] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙. 物理学报, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性. 物理学报, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [18] 肖三水, 沈林放, 何赛灵. 低频和高频区域内大禁带的二维各向异性光子晶体. 物理学报, 2002, 51(12): 2858-2864. doi: 10.7498/aps.51.2858
    [19] 沈林放, 何赛灵, 吴良. 等效介质理论在光子晶体平面波展开分析方法中的应用. 物理学报, 2002, 51(5): 1133-1138. doi: 10.7498/aps.51.1133
    [20] 郑君, 叶志成, 唐伟国, 刘大禾. 体积全息图中的光子禁带. 物理学报, 2001, 50(11): 2144-2148. doi: 10.7498/aps.50.2144
计量
  • 文章访问数:  4620
  • PDF下载量:  705
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-30
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

外磁场与温度对低温超导光子晶体低频禁带特性的影响

  • 1. 南京航空航天大学电子信息工程学院, 南京 210016;
  • 2. 东南大学毫米波国家重点实验室, 南京 210096;
  • 3. 镇江船艇学院, 镇江 212003
    基金项目: 国家自然科学基金(批准号: 60971122) 毫米波国家重点实验室开放基金(批准号: K201103) 航空科学基金(批准号: 2009ZA52008)资助的课题.

摘要: 文中用传输矩阵法(TMM)分析了TM波垂直入时,超导光子晶体的低频禁带特性,并讨论了外磁场与温度对禁带的影响.分析结果表明:超导光子晶体存在频率从0开始的低频禁带;当没有外磁场作用时,由于超导中正常态电子的影响,低频禁带的截止频率与温度无关;有外磁场作用时,温度才对截止频率具有可调性.外加恒定磁场时,低频禁带的截止频率随温度升高而减小;而在正常态电子的作用下,温度对处在超导态超导光子晶体禁带截止频率的调节范围相对忽略正常态电子情况下减小.恒温下,通过调节外磁场来控制带隙时,正常态电子的贡献很小可忽略不计;外磁场强度增大禁带截止频率减小.当超导体完全处于正常态时,低频禁带消失.

English Abstract

参考文献 (63)

目录

    /

    返回文章
    返回