搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相场再结晶储能释放模型与显微组织演变的模拟研究

张宪刚 宗亚平 吴艳

引用本文:
Citation:

相场再结晶储能释放模型与显微组织演变的模拟研究

张宪刚, 宗亚平, 吴艳

A model for releasing of stored energy and microstructure evolution during recrystallization by phase-field simulation

Zhang Xian-Gang, Zong Ya-Ping, Wu Yan
PDF
导出引用
  • 在相场再结晶模型中提出了形式为 f(ik,jk) = Es (ide )2 (1-(jre)2)的冷变形储能项,并应用该模型模拟了AZ31镁合金的再结晶过程,模拟结果和实验观测结果符合很好.研究表明, 引入储能释放模型可以实现再结晶形核物理过程的模拟; 模拟结果可以把合金在冷变形后退火的过程按照机理分为再结晶和热晶粒长大两个阶段,模拟得出的理论再结晶时间是实验再结晶时间的2/3. 考察了冷变形应变大小对形变金属的亚晶粒尺寸和储能的影响机理和试验结果,并将考察结果代入到改进后的再结晶模拟模型, 成功地再现了一个经典实验结果:随预先应变量的增加, 存在临界应变量对应的一个再结晶晶粒尺寸峰值.同时还给出了这一经典实验结果的理论解释.
    A format of f(ik,jk ) = Es (ide )2(1-(jre )2) to express cold deformed stored energy is suggested in a phase-field model for simulating recrystallization in alloys. Using AZ31 magnesium alloy as an example, the recrystallization process is simulated by the new model, and the simulation results are in good agreement with experimental measurements. The nucleation process of recrystallization is realized for the first time by the model based on the physical background. The simulation results show that the grain growth of a cold deformed alloy in the annealing process indicates automatically two stages: recrystallization driven by the restored energy and thermal growth driven by boundary energy. A theoretical time spent in finishing recrystallization, obtained by simulation, is found to be 2/3 of that obtained by industrial practice. The mechanism and the experimental results about the influence of cold deformation on subgrain size and stored energy are examined, and the experimental results are introduced into the simulation. The common experimental phenomenon shows that there is a peak at the critical strain on the curve of recrystallized grain size versus cold strain. A theoretical explaination to the mechanism of the peak occurrence is also discussed.
    • 基金项目: 国家自然科学基金(批准号: 51171040, 50771028)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51171040, 50771028).
    [1]

    Liss K D, Garbe U, Li H, Schambron T, Almer J D, Yan K 2009 Adv. Eng. Mater. 11 637

    [2]

    Radhakrishnan B, Sarma B, Zacharia T 1998 Acta Mater. 46 4415

    [3]

    Kugler G, Turk R 2006 Comput. Mater. Sci. 37 284

    [4]

    Raabe D, Becker R C 2000 Simul. Mater. Sci. Eng. 8 445

    [5]

    Wang M T, Zong B Y, Wang G 2008 J. Mater. Sci. Technol. 24 829

    [6]

    Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平, 王明涛, 郭巍 2009 物理学报 58 S161]

    [7]

    Zhang X G, Zong Y P, Wang M T, Wu Y 2011 Acta Phys. Sin. 60 068201 (in Chinese) [张宪刚, 宗亚平, 王明涛, 吴艳 2011 物理学报 60 068201]

    [8]

    Gao Y J, Luo Z R, Hu X Y, Huang C G 2010 Acta Metall. Sin. 46 1161 (in Chinese) [高英俊, 罗志荣, 胡项英, 黄创高 2010 金属学报 46 1161]

    [9]

    Wang G, Xu D S, Yang R 2009 Acta Phys. Sin. 58 S343 (in Chinese) [王刚, 徐东升, 杨锐 2009 物理学报 58 S343]

    [10]

    Takaki T, Tomita I Y 2010 Int. J. Mech. Sci. 52 320

    [11]

    Cahn J W 1961 Acta Metall. 9 795

    [12]

    Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (London: Academic Press) pp267---466

    [13]

    Moreau G, Cornet J A, Calais D 1971 J. Nucl. Mater. 38 197

    [14]

    Watari H, Haga T, Koga N, Davey K 2007 J. Mater. Process. Technol. 192 300

    [15]

    Miyashita Y, Borrisutthekul R, Chen J, Mutoh Y 2007 Key Eng. Mater. 353 1956

    [16]

    Verdier M, Groma I, Flandin L, Lendvai J, Brechet Y, Guyot P 1997 Scripta Mater. 37 449

    [17]

    Liu R C, Wang L Y, Gu L G, Huang G S 2004 Light Alloy Fabr. Technol. 32 22 (in Chinese) [刘饶川, 汪凌云, 辜蕾钢,黄光胜 2004 轻合金加工技术 32 22]

    [18]

    Langford G, Cohen M 1969 ASM Trans. Quart. 62 623

    [19]

    Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul J D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D 1997 Mater. Sci. Eng. A 238 219

    [20]

    Hansen N, Ralph B 1982 Acta Metall. 30 411

    [21]

    Belyakov A, Sakai T, Miura H, Tsuzakit K 2001 Philos. Mag. A 81 2629

    [22]

    Barnett M R, Keshavarz Z, Beer A G, Atwell D 2004 Acta Mater. 52 5093

  • [1]

    Liss K D, Garbe U, Li H, Schambron T, Almer J D, Yan K 2009 Adv. Eng. Mater. 11 637

    [2]

    Radhakrishnan B, Sarma B, Zacharia T 1998 Acta Mater. 46 4415

    [3]

    Kugler G, Turk R 2006 Comput. Mater. Sci. 37 284

    [4]

    Raabe D, Becker R C 2000 Simul. Mater. Sci. Eng. 8 445

    [5]

    Wang M T, Zong B Y, Wang G 2008 J. Mater. Sci. Technol. 24 829

    [6]

    Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平, 王明涛, 郭巍 2009 物理学报 58 S161]

    [7]

    Zhang X G, Zong Y P, Wang M T, Wu Y 2011 Acta Phys. Sin. 60 068201 (in Chinese) [张宪刚, 宗亚平, 王明涛, 吴艳 2011 物理学报 60 068201]

    [8]

    Gao Y J, Luo Z R, Hu X Y, Huang C G 2010 Acta Metall. Sin. 46 1161 (in Chinese) [高英俊, 罗志荣, 胡项英, 黄创高 2010 金属学报 46 1161]

    [9]

    Wang G, Xu D S, Yang R 2009 Acta Phys. Sin. 58 S343 (in Chinese) [王刚, 徐东升, 杨锐 2009 物理学报 58 S343]

    [10]

    Takaki T, Tomita I Y 2010 Int. J. Mech. Sci. 52 320

    [11]

    Cahn J W 1961 Acta Metall. 9 795

    [12]

    Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (London: Academic Press) pp267---466

    [13]

    Moreau G, Cornet J A, Calais D 1971 J. Nucl. Mater. 38 197

    [14]

    Watari H, Haga T, Koga N, Davey K 2007 J. Mater. Process. Technol. 192 300

    [15]

    Miyashita Y, Borrisutthekul R, Chen J, Mutoh Y 2007 Key Eng. Mater. 353 1956

    [16]

    Verdier M, Groma I, Flandin L, Lendvai J, Brechet Y, Guyot P 1997 Scripta Mater. 37 449

    [17]

    Liu R C, Wang L Y, Gu L G, Huang G S 2004 Light Alloy Fabr. Technol. 32 22 (in Chinese) [刘饶川, 汪凌云, 辜蕾钢,黄光胜 2004 轻合金加工技术 32 22]

    [18]

    Langford G, Cohen M 1969 ASM Trans. Quart. 62 623

    [19]

    Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul J D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D 1997 Mater. Sci. Eng. A 238 219

    [20]

    Hansen N, Ralph B 1982 Acta Metall. 30 411

    [21]

    Belyakov A, Sakai T, Miura H, Tsuzakit K 2001 Philos. Mag. A 81 2629

    [22]

    Barnett M R, Keshavarz Z, Beer A G, Atwell D 2004 Acta Mater. 52 5093

  • [1] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [3] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良. Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质. 物理学报, 2023, 72(17): 177801. doi: 10.7498/aps.72.20230685
    [4] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理. 物理学报, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [5] 张伟光, 张凯奋, 夏立东, 黄鑫, 周晓松, 彭述明, 施立群. 氘氚冰籽晶的形核行为. 物理学报, 2022, 71(2): 025203. doi: 10.7498/aps.71.20211018
    [6] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型. 物理学报, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [7] 张伟光, 张凯奋, 夏立东, 黄鑫, 周晓松, 彭述明, 施立群. 氘氚冰籽晶形核行为研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211018
    [8] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制. 物理学报, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [9] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [10] 王理林, 王志军, 林鑫, 王锦程, 黄卫东. 冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响. 物理学报, 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [11] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟. 物理学报, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [12] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究. 物理学报, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [13] 张宇, 葛昌纯, 沈卫平, 邱成杰. 喷射成型FGH4095静态再结晶组织特征. 物理学报, 2012, 61(20): 208101. doi: 10.7498/aps.61.208101
    [14] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒. 物理学报, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [15] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟. 物理学报, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [16] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析. 物理学报, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [17] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [18] 张玉祥, 王锦程, 杨根仓, 周尧和. 相场法模拟弹性场对沉淀相变组织演化及相平衡成分的影响. 物理学报, 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [19] 黄 文, 曾慧中, 张 鹰, 蒋书文, 魏贤华, 李言荣. 不同晶化工艺对非晶PZT纳米薄膜形核取向生长机理的影响. 物理学报, 2005, 54(3): 1334-1340. doi: 10.7498/aps.54.1334
    [20] 王国梁, 梁开明, 刘 伟, 周 锋. 掺金玻璃在电场热处理中的形核过程. 物理学报, 2004, 53(11): 3966-3970. doi: 10.7498/aps.53.3966
计量
  • 文章访问数:  7676
  • PDF下载量:  1326
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-02
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回