搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

发光层厚度对联苯乙烯衍生物蓝色有机发光器件性能的影响

吴有智 张文林 倪蔚德 张材荣 张定军

引用本文:
Citation:

发光层厚度对联苯乙烯衍生物蓝色有机发光器件性能的影响

吴有智, 张文林, 倪蔚德, 张材荣, 张定军

Influence of active layer thickness on the performance of distyrylarylene derivative blue organic light-emitting device

Wu You-Zhi, Zhang Wen-Lin, Ni Wei-De, Zhang Cai-Rong, Zhang Ding-Jun
PDF
导出引用
  • 本文制备了联苯乙烯衍生物(4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-biphenyl, DPVBi)为发光层的蓝色有机电致发光器件. 器件性能随发光层厚度变化而变. 在DPVBi厚度为1050 nm范围内, 同样电流密度下器件亮度及效率随DPVBi厚度增加先增后减, 40 nm时最佳, 最高亮度达到15840 cd/m2, 最高外量子效率达到3.2%, 器件色坐标(Commission Internationale de l'Eclairage (CIE) co-ordinates) 为(0.15, 0.15). DPVBi厚度超过40 nm时器件发光光谱出现红移而致色度变差, 其原因可归于微腔效应所致. 同时, 通过实验结果分析表明DPVBi中激子扩散长度位于2030 nm范围.
    Thickness of emissive layer in organic electroluminescent device is one of the important factors affecting the device performance. In this report, a blue electroluminescent device with an active layer of 4, 4'-bis(2, 2'-diphenylvinyl) -1, 1'- biphenyl (DPVBi) is fabricated. The device performance varies with the thickness of DPVBi. With the increase of the DPVBi thickness between 1050 nm, the device luminance and efficiency at the same current density first increase and then decrease, the device with a DPVBi thickness of 40 nm exhibits the highest luminance of 15840 cd/m2 and a maximum external quantum efficiency of 3.2%, with Commission Internationale de l'Eclairage (CIE) co-ordinates being (0.15, 0.15). The luminescent spectral red shift and the color purity deteriorate when the thickness is over 40 nm, which can be attributed to a result of microcavity effect. In the meantime, the analysis from experimental results shows that the exciton diffusion length in DPVBi is between 2030 nm.
    • 基金项目: 甘肃省自然科学基金(批准号: 1010RJZA035), 教育部留学回国人员科研启动基金(批准号: 第40批)和 国家自然科学基金(批准号: 11164015, 11164016)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Gansu Province, China (Grant No. 1010RJZA035), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Grant No. 40), and the National Natural Science Foundation of China (Grant Nos. 11164015, 11164016).
    [1]

    Zhou Y C, Zhou J, Zhao J M, Zhang S T, Zhan Y Q, Wang X Z, Wu Y, Ding X M, Hou X Y 2006 Appl. Phys. A 83 465

    [2]

    Jiao B, Wu Z X, Yan X W, Hou X 2010 Appl. Phys. A 98 239

    [3]

    Yap C C, Yahaya M, Salleh M M 2008 Curr. Appl. Phys. 8 637

    [4]

    Xie W F, Hou J Y, Liu S Y 2003 Semicond. Sci. Technol. 18 L42

    [5]

    Hosokawa C, Higashi H, Nakamura H, Kusumoto T 1995 Appl. Phys. Lett. 67 3853

    [6]

    Wu Y Z, Zheng X Y, Zhu W Q, Zhang B X, Jiang X Y, Zhang Z L, Xu S H 2002 Semiconductor Optoelectronics 23 253 (in Chinese) [吴有智, 郑新友, 朱文清, 张步新, 蒋雪茵, 张志林, 许少鸿 2002 半导体光电 23 253]

    [7]

    Cao J, Jiang X Y, Zhang Z L 2006 Appl. Phys. Lett. 89 252108

    [8]

    Matsushima T, Kinoshita Y, Murata H 2007 Appl. Phys. Lett. 91 253504

    [9]

    Zhang Y, Li Y, Duan L, Zhang D Q, Qiu Y 2007 Acta Phys. Chim. Sin. 23 455 (in Chinese) [张锐, 李杨, 段炼, 张德强, 邱勇 2007 物理化学学报 23 455]

    [10]

    Gebler D D, Wang Y Z, Blatchford J W, Jessen S W, Fu D K, Swager T M, MacDiarmid A G, Epstein A J 1997 Appl. Phys. Lett. 70 1644

    [11]

    So S K, Choi W K, Leung L M, Neyts K 1999 Appl. Phys. Lett. 74 1939

    [12]

    Jiang W L, Wang J, Ding G Y, Wang J, Wang L Z, Han Q, Liu S Y 2006 Chi. J. Lum. 27 561 (in Chinese) [姜文龙, 王静, 丁桂英, 汪津, 王立忠, 韩强, 刘式墉 2006 发光学报 27 561]

    [13]

    Tse S C, Kwok K C, So S K 2006 Appl. Phys. Lett. 89 262102

    [14]

    Lin C L, Lin H W, Wu C C 2006 Appl. Phys. Lett. 87 021101

    [15]

    Dodabalapur A, Rothberg L J, Jordan R H, Miller T M, Slusher R E, Phillips J M 1996 J. Appl. Phys. 80 6954

    [16]

    Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227

    [17]

    Tang C W, Van Slyke S A, Chen C H 1989 J. Appl. Phys. 65 3610

    [18]

    Kalinowski J, Fattori V, Marco P D 2001 Chem. Phys. 266 85

  • [1]

    Zhou Y C, Zhou J, Zhao J M, Zhang S T, Zhan Y Q, Wang X Z, Wu Y, Ding X M, Hou X Y 2006 Appl. Phys. A 83 465

    [2]

    Jiao B, Wu Z X, Yan X W, Hou X 2010 Appl. Phys. A 98 239

    [3]

    Yap C C, Yahaya M, Salleh M M 2008 Curr. Appl. Phys. 8 637

    [4]

    Xie W F, Hou J Y, Liu S Y 2003 Semicond. Sci. Technol. 18 L42

    [5]

    Hosokawa C, Higashi H, Nakamura H, Kusumoto T 1995 Appl. Phys. Lett. 67 3853

    [6]

    Wu Y Z, Zheng X Y, Zhu W Q, Zhang B X, Jiang X Y, Zhang Z L, Xu S H 2002 Semiconductor Optoelectronics 23 253 (in Chinese) [吴有智, 郑新友, 朱文清, 张步新, 蒋雪茵, 张志林, 许少鸿 2002 半导体光电 23 253]

    [7]

    Cao J, Jiang X Y, Zhang Z L 2006 Appl. Phys. Lett. 89 252108

    [8]

    Matsushima T, Kinoshita Y, Murata H 2007 Appl. Phys. Lett. 91 253504

    [9]

    Zhang Y, Li Y, Duan L, Zhang D Q, Qiu Y 2007 Acta Phys. Chim. Sin. 23 455 (in Chinese) [张锐, 李杨, 段炼, 张德强, 邱勇 2007 物理化学学报 23 455]

    [10]

    Gebler D D, Wang Y Z, Blatchford J W, Jessen S W, Fu D K, Swager T M, MacDiarmid A G, Epstein A J 1997 Appl. Phys. Lett. 70 1644

    [11]

    So S K, Choi W K, Leung L M, Neyts K 1999 Appl. Phys. Lett. 74 1939

    [12]

    Jiang W L, Wang J, Ding G Y, Wang J, Wang L Z, Han Q, Liu S Y 2006 Chi. J. Lum. 27 561 (in Chinese) [姜文龙, 王静, 丁桂英, 汪津, 王立忠, 韩强, 刘式墉 2006 发光学报 27 561]

    [13]

    Tse S C, Kwok K C, So S K 2006 Appl. Phys. Lett. 89 262102

    [14]

    Lin C L, Lin H W, Wu C C 2006 Appl. Phys. Lett. 87 021101

    [15]

    Dodabalapur A, Rothberg L J, Jordan R H, Miller T M, Slusher R E, Phillips J M 1996 J. Appl. Phys. 80 6954

    [16]

    Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227

    [17]

    Tang C W, Van Slyke S A, Chen C H 1989 J. Appl. Phys. 65 3610

    [18]

    Kalinowski J, Fattori V, Marco P D 2001 Chem. Phys. 266 85

  • [1] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪. 物理学报, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [2] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [3] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [4] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
计量
  • 文章访问数:  6460
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-12
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

/

返回文章
返回