搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于太赫兹量子级联激光器的无线信号传输的实现

谭智勇 陈镇 韩英军 张戎 黎华 郭旭光 曹俊诚

引用本文:
Citation:

基于太赫兹量子级联激光器的无线信号传输的实现

谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚

Experimental realization of wireless transmission based on terahertz quantumcascade laser

Tan Zhi-Yong, Chen Zhen, Han Ying-Jun, Zhang Rong, Li Hua, Guo Xu-Guang, Cao Jun-Cheng
PDF
导出引用
  • 文章采用连续波激射的太赫兹量子级联激光器(THz QCL) 为发射端、光谱匹配的THz量子阱探测器(THz QWP) 为接收端, 搭建了基于THz波的无线传输演示系统. 测量并分析了该演示系统的传输带宽. 采用搭建的无线传输系统演示了基于4.13 THz电磁波的图片文件的无线传输过程, 得到了与源文件一致的结果, 验证了采用THz QCL和THz QWP进行THz信号无线传输的可行性.最后, 分析了演示系统的传输速率, 给出了提高系统传输速率的方法.
    A terahertz wireless transmission system is constructed by using a continuous wave terahertz quantum-cascade laser (THz QCL) and a spectrally-matched terahertz quantum-well photodetector (THz QWP). The transmission bandwidth of the system is measured. The transmission processes at 4.13 THz of a picture file are demonstrated by employing the above system, and the both message totally consistent with the original one are received correctly. Hence, the feasibility of wireless transmission based on THz QCL and THz QWP devices is confirmed. Finally, we analyze the transmission rate of the demonstrating system and give the improving methods.
    • 基金项目: 863主题项目(批准号: 2011AA010205), 国家自然科学基金(批准号: 61131006, 61021064, 61176086), 国家重大科学仪器设备开发专项(批准号: 2011YQ150021), 中科院重要方向项目(批准号: YYYJ-1123-1), 上海市基础研究重点基金(批准号: 10JC1417000)和上海市自然科学基金(批准号: 11ZR1444200)资助的课题.
    • Funds: Project supported by the 863 Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61021064, and 61176086), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the Major Project (Project No. YYYJ-1123-1), the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant Nos. 10JC1417000, 11ZR1444200).
    [1]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38

    [2]

    Zhang R, Guo X G, Song C Y, Buchanan M, Wasilewski Z R, Cao J C, Liu H C 2011 IEEE Electron Dev. Lett. 32 659

    [3]

    Cooper K B, Dengler R J, Chattopadhyay G, Schlecht E, Gill J, Skalare A, Mehdi I, Siegel P H 2008 IEEE Microw. Wirel. Compon. Lett. 18 64

    [4]

    Lee A W M, Qin Q, Kumar S, Williams B S, Hu Q, Reno J L 2006 Appl. Phys. Lett. 89 141125

    [5]

    Tonouchi M 2007 Nature Photonics 1 97

    [6]

    Nagatsuma T, Song H J, Kado Y 2010 THz. Sci. Technol. 3 55

    [7]

    Takahashi H, Kosugi T, Hirata A, Murata K, Kukutsu N 2010 IEEE Trans. Microwave Theory Tech. 58 4072

    [8]

    Zhang R, Cao J C 2010 Acta Phys. Sin. 59 3924 (in Chinese) [张 戎, 曹俊诚 2010 物理学报 59 3924]

    [9]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R, Rossi F 2002 Nature 417 156

    [10]

    Liu H C, Song C Y, Spring Thorpe A J, Cao J C 2004 Appl. Phys. Lett. 84 4068

    [11]

    Kumar S, Hu Q, Reno J L 2009 Appl. Phys. Lett. 94 131105

    [12]

    Wanke M. C, Young E W, Nordquist C D, Cich M J, Grine A D, Fuller C T, Reno J L, Lee M 2010 Nat. Photon. 4 565

    [13]

    Kumar S, Chan C W I, Hu Q, Reno J L 2011 Nat. Phys. 7 166

    [14]

    Amanti M I, Fischer M, Scalari G, Beck M, Faist J 2009 Nat. Photon. 3 586

    [15]

    Gellie P, Barbieri S, Lampin J -F, Filloux P, Manquest C, Sirtori C, Sagnes I, Khanna S P, Linfield E H, Davies A G, Beere H, Ritchie D 2010 Opt. Express 18 20799

    [16]

    Tan Z Y, Guo X G, Cao J C, Li H, Han Y J 2010 Acta Phys. Sin. 59 2391 (in Chinese) [谭智勇, 郭旭光, 曹俊诚, 黎华, 韩英军 2010 物理学报 59 2391]

    [17]

    Grant P D, Dudek R, Buchanan M, Liu H C 2006 IEEE Photonic Tech. Lett. 18 2218

    [18]

    Luo H, Liu H C, Song C Y, Wasilewski Z R 2005 Appl. Phys. Lett. 86 231103

    [19]

    Patrashin M, Hosako I 2008 Opt. Lett. 33 168

    [20]

    Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101

    [21]

    Graf M, Dupont E, Luo H, Haffouz S, Wasilewski Z R, SpringThorpe A J, Ban D, Liu H C 2009 Infrared Phys. Technol. 52 289

    [22]

    Patrashin M, Hosako I, Merken P 2006 Proc. SPIE 6038 60380H

    [23]

    Hosako I, Sekine N, Patrashin M, Yasuda H 2007 Proc. SPIE 6772 67720R

    [24]

    Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A, Liu H C 2009 Electron. Lett. 45 952

  • [1]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38

    [2]

    Zhang R, Guo X G, Song C Y, Buchanan M, Wasilewski Z R, Cao J C, Liu H C 2011 IEEE Electron Dev. Lett. 32 659

    [3]

    Cooper K B, Dengler R J, Chattopadhyay G, Schlecht E, Gill J, Skalare A, Mehdi I, Siegel P H 2008 IEEE Microw. Wirel. Compon. Lett. 18 64

    [4]

    Lee A W M, Qin Q, Kumar S, Williams B S, Hu Q, Reno J L 2006 Appl. Phys. Lett. 89 141125

    [5]

    Tonouchi M 2007 Nature Photonics 1 97

    [6]

    Nagatsuma T, Song H J, Kado Y 2010 THz. Sci. Technol. 3 55

    [7]

    Takahashi H, Kosugi T, Hirata A, Murata K, Kukutsu N 2010 IEEE Trans. Microwave Theory Tech. 58 4072

    [8]

    Zhang R, Cao J C 2010 Acta Phys. Sin. 59 3924 (in Chinese) [张 戎, 曹俊诚 2010 物理学报 59 3924]

    [9]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R, Rossi F 2002 Nature 417 156

    [10]

    Liu H C, Song C Y, Spring Thorpe A J, Cao J C 2004 Appl. Phys. Lett. 84 4068

    [11]

    Kumar S, Hu Q, Reno J L 2009 Appl. Phys. Lett. 94 131105

    [12]

    Wanke M. C, Young E W, Nordquist C D, Cich M J, Grine A D, Fuller C T, Reno J L, Lee M 2010 Nat. Photon. 4 565

    [13]

    Kumar S, Chan C W I, Hu Q, Reno J L 2011 Nat. Phys. 7 166

    [14]

    Amanti M I, Fischer M, Scalari G, Beck M, Faist J 2009 Nat. Photon. 3 586

    [15]

    Gellie P, Barbieri S, Lampin J -F, Filloux P, Manquest C, Sirtori C, Sagnes I, Khanna S P, Linfield E H, Davies A G, Beere H, Ritchie D 2010 Opt. Express 18 20799

    [16]

    Tan Z Y, Guo X G, Cao J C, Li H, Han Y J 2010 Acta Phys. Sin. 59 2391 (in Chinese) [谭智勇, 郭旭光, 曹俊诚, 黎华, 韩英军 2010 物理学报 59 2391]

    [17]

    Grant P D, Dudek R, Buchanan M, Liu H C 2006 IEEE Photonic Tech. Lett. 18 2218

    [18]

    Luo H, Liu H C, Song C Y, Wasilewski Z R 2005 Appl. Phys. Lett. 86 231103

    [19]

    Patrashin M, Hosako I 2008 Opt. Lett. 33 168

    [20]

    Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101

    [21]

    Graf M, Dupont E, Luo H, Haffouz S, Wasilewski Z R, SpringThorpe A J, Ban D, Liu H C 2009 Infrared Phys. Technol. 52 289

    [22]

    Patrashin M, Hosako I, Merken P 2006 Proc. SPIE 6038 60380H

    [23]

    Hosako I, Sekine N, Patrashin M, Yasuda H 2007 Proc. SPIE 6772 67720R

    [24]

    Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A, Liu H C 2009 Electron. Lett. 45 952

计量
  • 文章访问数:  4150
  • PDF下载量:  657
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-01
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

基于太赫兹量子级联激光器的无线信号传输的实现

  • 1. 中国科学院上海微系统与信息技术研究所, 中国科学院太赫兹固态技术重点实验室, 上海 200050
    基金项目: 

    863主题项目(批准号: 2011AA010205), 国家自然科学基金(批准号: 61131006, 61021064, 61176086), 国家重大科学仪器设备开发专项(批准号: 2011YQ150021), 中科院重要方向项目(批准号: YYYJ-1123-1), 上海市基础研究重点基金(批准号: 10JC1417000)和上海市自然科学基金(批准号: 11ZR1444200)资助的课题.

摘要: 文章采用连续波激射的太赫兹量子级联激光器(THz QCL) 为发射端、光谱匹配的THz量子阱探测器(THz QWP) 为接收端, 搭建了基于THz波的无线传输演示系统. 测量并分析了该演示系统的传输带宽. 采用搭建的无线传输系统演示了基于4.13 THz电磁波的图片文件的无线传输过程, 得到了与源文件一致的结果, 验证了采用THz QCL和THz QWP进行THz信号无线传输的可行性.最后, 分析了演示系统的传输速率, 给出了提高系统传输速率的方法.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回