搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Monte Carlo方法模拟非直视紫外光散射覆盖范围

赵太飞 柯熙政

引用本文:
Citation:

Monte Carlo方法模拟非直视紫外光散射覆盖范围

赵太飞, 柯熙政

Monte Carlo simulations for non-line-of-sight ultraviolet scattering coverage area

Zhao Tai-Fei, Ke Xi-Zheng
PDF
导出引用
  • 针对大气中紫外光散射通信的特点, 用Monte Carlo方法对紫外光非直视(NLOS) 通信三种工作方式的覆盖范围进行分析, 建立了基于Monte Carlo方法的NLOS紫外光传输模型.利用Monte Carlo模拟方法对三种NLOS散射方式的单次和多次散射路径损耗及覆盖范围进行模拟研究, 结果表明, 多次散射和单次散射的路径损耗基本一致, NLOS(a) 类全向发送全向接收通信方式覆盖范围最小但全方位性好, NLOS(b) 类定向发送全向接收通信方式的覆盖范围较大但有一定方向性, NLOS(c) 类定向发送定向接收通信方式的覆盖范围最大但有很强的方向性.
    In this paper, the Monte Carlo method is employed to simulate the ultraviolet light scattering transmission. The three modes of ultraviolet (UV) no-line-of-sight (NLOS) communication are analyzed. The UV NLOS transmission model based on the Monte Carlo method is proposed. The path losses of single and multiple scatterings and the coverage area of three UV NLOS modes are simulated by using the Monte Carlo method. Finally, we obtain the conclusion that multiple scattering and single scattering basically have the same path loss. The coverage of NLOS (a) is smallest, but omni-direction is good. The coverage of NLOS (b) is larger, but it is directional. The coverage of NLOS (c) is largest, but it is strongly directional.
    • 基金项目: 国家自然科学基金(批准号: 61001069)、 陕西省自然科学基金(批准号: 2011JQ8028)、 西安市科技计划(批准号: CXY1012(2)) 和陕西省教育厅科研计划(批准号: 2010JK739, 08JK386) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001069), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2011JQ8028), the Science and Technology Program of Xi'an, China (Grant No. CXY1012(2)), and the Research Project of the Education Department of Shaanxi Province, China (Grant Nos. 2010JK739, 08JK386).
    [1]

    Reilly D M, Moriarty D T, Maynard J A 2004 Proc. SPIE 5611 244

    [2]

    Charles B, Hughes B, Erickson A 1994 Proc. SPIE 2115 79

    [3]
    [4]
    [5]

    Tang Y, Wu Z L, Ni G Q, Tao L Q 2008 Proc. SPIE 7136 713615

    [6]
    [7]

    Xu Z Y, Sadler B M 2008 IEEE Commun. Mag. 46 67

    [8]
    [9]

    Hulst V 1957 Light Scattering by Small Particles (New York: Wiley) pp107--185

    [10]

    Geller M, Johnson G B, Yen J H, Clapp G A 1986 Proceedings of the Tactical Communication Conference Fort Wayne, USA, April 2--6, 1986 p60

    [11]
    [12]

    Witt A N 1977 APJS 35 1

    [13]
    [14]

    Ding H P, Chen G, Majumdar A, Sadler B M, Xu Z Y 2009 IEEE JSAC 27 1535

    [15]
    [16]

    Xu Z J 1985 Monte Carlo Method (Shanghai: Shanghai Science and Technology Press) pp20--40 (in Chinese) [徐钟济 1985 蒙特卡罗方法 (上海: 上海科学技术出版社) 第20---40页]

    [17]
    [18]

    Shaw G A, Siegel A M, Mode J, Greisokh D 2005 Proc. SPIE 5796 214

    [19]
    [20]
    [21]

    Xu Z Y 2007 IEEE Intl. Conf. on Acoustics, Speech, and Signal Proc. Honolulu, USA, April 15--20, 2007 pIII-577

    [22]

    Wang J L, Luo T, Dai M, Tian Y F 2009 Proc. CSIE Anaheim, USA, March 31 -- April 2, 2009 p85

    [23]
    [24]
    [25]

    Jia H H, Chang S L, Yang J K, Yang J C, Ji J R 2008 Acta Photon. Sin. 36 955 (in Chinese) [贾红辉, 常胜利, 杨建坤, 杨俊才, 季家镕 2007 光子学报 36 955]

    [26]
    [27]

    Shao Z Z, Chang S L, Lan Y, Jia H H, Zhang L Q 2006 Opt. Optoelectron. Technol. 4 18 (in Chinese) [邵铮铮, 常胜利, 兰勇, 贾红辉, 张里荃 2006 光学与光电技术 4 18]

    [28]

    Zhao T F, Feng Y L, Ke X Z, He H 2010 Acta Opt. Sin. 30 2229 (in Chinese) [赵太飞, 冯艳玲, 柯熙政, 何 华 2010 光学学报 30 2229]

    [29]
    [30]

    Ding H P, Chen G, Majumdar A, Sadler B M, Xu Z Y 2009 IEEE JSAC 29 250

    [31]
    [32]
    [33]

    Ding H P, Chen G, Xu Z Y, Sadler B M 2010 7th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing: 2nd Colloquiumon Optical Wireless Communications Newcastle, UK, July 21--23, 2010 p593

  • [1]

    Reilly D M, Moriarty D T, Maynard J A 2004 Proc. SPIE 5611 244

    [2]

    Charles B, Hughes B, Erickson A 1994 Proc. SPIE 2115 79

    [3]
    [4]
    [5]

    Tang Y, Wu Z L, Ni G Q, Tao L Q 2008 Proc. SPIE 7136 713615

    [6]
    [7]

    Xu Z Y, Sadler B M 2008 IEEE Commun. Mag. 46 67

    [8]
    [9]

    Hulst V 1957 Light Scattering by Small Particles (New York: Wiley) pp107--185

    [10]

    Geller M, Johnson G B, Yen J H, Clapp G A 1986 Proceedings of the Tactical Communication Conference Fort Wayne, USA, April 2--6, 1986 p60

    [11]
    [12]

    Witt A N 1977 APJS 35 1

    [13]
    [14]

    Ding H P, Chen G, Majumdar A, Sadler B M, Xu Z Y 2009 IEEE JSAC 27 1535

    [15]
    [16]

    Xu Z J 1985 Monte Carlo Method (Shanghai: Shanghai Science and Technology Press) pp20--40 (in Chinese) [徐钟济 1985 蒙特卡罗方法 (上海: 上海科学技术出版社) 第20---40页]

    [17]
    [18]

    Shaw G A, Siegel A M, Mode J, Greisokh D 2005 Proc. SPIE 5796 214

    [19]
    [20]
    [21]

    Xu Z Y 2007 IEEE Intl. Conf. on Acoustics, Speech, and Signal Proc. Honolulu, USA, April 15--20, 2007 pIII-577

    [22]

    Wang J L, Luo T, Dai M, Tian Y F 2009 Proc. CSIE Anaheim, USA, March 31 -- April 2, 2009 p85

    [23]
    [24]
    [25]

    Jia H H, Chang S L, Yang J K, Yang J C, Ji J R 2008 Acta Photon. Sin. 36 955 (in Chinese) [贾红辉, 常胜利, 杨建坤, 杨俊才, 季家镕 2007 光子学报 36 955]

    [26]
    [27]

    Shao Z Z, Chang S L, Lan Y, Jia H H, Zhang L Q 2006 Opt. Optoelectron. Technol. 4 18 (in Chinese) [邵铮铮, 常胜利, 兰勇, 贾红辉, 张里荃 2006 光学与光电技术 4 18]

    [28]

    Zhao T F, Feng Y L, Ke X Z, He H 2010 Acta Opt. Sin. 30 2229 (in Chinese) [赵太飞, 冯艳玲, 柯熙政, 何 华 2010 光学学报 30 2229]

    [29]
    [30]

    Ding H P, Chen G, Majumdar A, Sadler B M, Xu Z Y 2009 IEEE JSAC 29 250

    [31]
    [32]
    [33]

    Ding H P, Chen G, Xu Z Y, Sadler B M 2010 7th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing: 2nd Colloquiumon Optical Wireless Communications Newcastle, UK, July 21--23, 2010 p593

  • [1] 殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田. 金属纳米颗粒二聚体阵列的消光截面. 物理学报, 2021, 70(2): 024201. doi: 10.7498/aps.70.20200964
    [2] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [3] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [4] 程晨, 史泽林, 崔生成, 徐青山. 改进的单次散射相函数解析表达式. 物理学报, 2017, 66(18): 180201. doi: 10.7498/aps.66.180201
    [5] 付成花. 微纳粒子光学散射分析. 物理学报, 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [6] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [7] 胡帅, 高太长, 李浩, 刘磊, 程天际, 张婷. 大气折射对可见光波段辐射传输特性的影响. 物理学报, 2015, 64(18): 184203. doi: 10.7498/aps.64.184203
    [8] 胡帅, 高太长, 刘磊, 易红亮, 贲勋. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真. 物理学报, 2015, 64(9): 094201. doi: 10.7498/aps.64.094201
    [9] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [10] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [11] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究. 物理学报, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [12] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [13] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟. 物理学报, 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [14] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [15] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [16] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射. 物理学报, 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [17] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值. 物理学报, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [18] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用. 物理学报, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [19] 姚细林, 王新兵, 赖建军. 微空心阴极放电的Monte Carlo模拟研究. 物理学报, 2003, 52(6): 1450-1454. doi: 10.7498/aps.52.1450
    [20] 李飞飞, 许京军, 刘思敏, 乔海军, 张光寅. c向切割LiNbO3∶Fe晶体中光折变光散射. 物理学报, 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
计量
  • 文章访问数:  4630
  • PDF下载量:  635
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-31
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

Monte Carlo方法模拟非直视紫外光散射覆盖范围

  • 1. 西安理工大学自动化与信息工程学院, 西安 710048
    基金项目: 国家自然科学基金(批准号: 61001069)、 陕西省自然科学基金(批准号: 2011JQ8028)、 西安市科技计划(批准号: CXY1012(2)) 和陕西省教育厅科研计划(批准号: 2010JK739, 08JK386) 资助的课题.

摘要: 针对大气中紫外光散射通信的特点, 用Monte Carlo方法对紫外光非直视(NLOS) 通信三种工作方式的覆盖范围进行分析, 建立了基于Monte Carlo方法的NLOS紫外光传输模型.利用Monte Carlo模拟方法对三种NLOS散射方式的单次和多次散射路径损耗及覆盖范围进行模拟研究, 结果表明, 多次散射和单次散射的路径损耗基本一致, NLOS(a) 类全向发送全向接收通信方式覆盖范围最小但全方位性好, NLOS(b) 类定向发送全向接收通信方式的覆盖范围较大但有一定方向性, NLOS(c) 类定向发送定向接收通信方式的覆盖范围最大但有很强的方向性.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回