搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管-聚乙烯复合材料界面力学特性分析

张忠强 丁建宁 刘珍 Y. Xue 程广贵 凌智勇

引用本文:
Citation:

碳纳米管-聚乙烯复合材料界面力学特性分析

张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇

Analysis of Interfacial Mechanical Properties of Carbon NanotubePolymer Composite

Zhang Zhong-Qiang, Ding Jian-Ning, Liu Zhen, Xue Yi-Bin, Cheng Guang-Gui, Ling Zhi-Yong
PDF
导出引用
  • 本文采用分子动力学模拟办法对碳纳米管-聚乙烯复合材料的界面力学特性进行了模拟和分析. 通过对单壁碳纳米管从无定形聚乙烯中抽出过程进行模拟, 研究了界面剪切应力随碳管滑移速度、聚乙烯分子链长和碳纳米管管径之间的变化关系, 并对界面的滑移机理进行了讨论. 模拟结果发现, 随着聚合物分子链长的增加, 界面临界剪切应力有显著增大, 而滑移剪切应力略显增加; 界面临界剪切应力和滑移剪切应力随着碳纳米管管径的增大而明显增加. 本文同时对界面应力的变化机理进行了模拟和讨论.
    In this paper, the interfacial mechanical properties of carbon nanotube-polyethylene (CNT-PE) composite are investigated by using classical molecular dynamics simulation. Basd on the simulations for the CNT pulling-out process from the PE, the influences of the CNT sliding velocity, the chain length of PE and the radius of CNT on the interfacial shear stress are explored. As the chain length of PE increases, the critical interfacial shear stress increases remarkably while the sliding shear stress increases slightly. Both the critical shear stress and the sliding shear stress increase with the radius of CNT enlarging. Moreover, the mechanism for the variation of interfacial shear stress is analyzed and discussed.
    • 基金项目: 国家自然科学基金(批准号: 11102074), 江苏省自然科学基金面上项目(批准号: BK2011463)和 江苏大学高级专业人才科研启动基金(批准号: 11JDG024)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11102074), Natural Science Foundation of Jiangsu Province (Grant No. BK2011463), and the initial funding of Jiangsu University (Grant No. 11JDG024).
    [1]

    Lau K T, Hui D 2002 Compos. B 33 263

    [2]

    Sun J P, Weng J B, Huang X Z, Ma L P 2009 Acta Phys. Sin. 58 6523 (in Chinese) [孙建平, 翁家宝, 黄小珠, 马琳璞 2009 物理学报 58 6523]

    [3]

    Wang J L, Xiong G P, Gu M, Zhang X, Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese) [王建立, 熊国平, 顾明, 张兴, 梁吉 2009 物理学报 58 4536]

    [4]

    Schadler L S, Giannaris S C, Ajayan P M 1998 Appl. Phys. Lett. 73 3842

    [5]

    Shaffer M S P, Windle A H 1999 Adv. Mater. 11 937

    [6]

    Gong X, Liu J, Baskaran S, Voise R D, Young J S 2000 Chem. Mater. 12 1049

    [7]

    Haggenmueller R, Gommans H H, Rinzler A G, Fischer J E, Winey K I 2000 Chem. Phys. Lett. 330 219

    [8]

    Qian D, Dichey E C, Andrews R, Rantell T 2000 Appl. Phys. Lett. 76 2868

    [9]

    Piggott M R 1995 Composites Sci. Techn. 55 269

    [10]

    Bechel V T, Sottos N R 1998 Composites Sci. Techn. 58 1727

    [11]

    Thostenson E T, Ren Z F, Chou T W 2001 Composites Sci. Techn. 61 1899

    [12]

    Ajayan P M, Schadler LS, Giannaris C, Rubio A 2000 Adv. Mater. 12 750

    [13]

    Zheng Q Z, Xue Q Z, Yan K Y, Gao X L, Li Q, Hao L Z 2008 Polymer 49 800

    [14]

    Al-Haik M, Hussaini M Y 2005 J. Appl. Phys. 97 074306

    [15]

    Lordi V, Yao N 2000 J. Mater. Res. 15 2770

    [16]

    Liao K, Li S 2001 Appl. Phys. Lett. 79 4225

    [17]

    Frankland S J V, Caglar A, Brenner D W, Griebel M 2002 J. Phys. Chem. B 106 3046

    [18]

    Frankland S J V, Harik V M 2003 Surf. Sci. 525 L103

    [19]

    Chowdhury S C, Okabe T 2007 Composites. A 38 747

    [20]

    Liu Y J, Nishimaura N, Qian D, Adachi N, Otani Y, Mokashi V 2008 Engineering Analysis with Boundary Elements 32 299

    [21]

    Gou J H, Minaie B, Wang B, Liang Z Y, Zhang C 2004 Computational Materials Sicience 31 225

    [22]

    Wei C Y 2006 Applied Physics Letters 88 093108

    [23]

    Plimpton S 1995 J. Comp Phys 117 1

    [24]

    Liao K, Li S 2001 Applied Physics Letters 79 4225

    [25]

    Kuwajima S, Noma H, Ohsaka T 1994 Proceedings of the fourth symposium of the society of computer chemistry, Japan 53

    [26]

    Allen M P, Tildesley D J 1987 Computer simulation of liquids (Clarendon Press)

    [27]

    Shepherd J E 2006 Dissertation (Georgia Institute of Technology) P39

    [28]

    Gourdon D, Israelachvili J N 2003 Physical Review E 68 021602

    [29]

    Hossain D, Tschopp M A, Ward D K, Bouvard J L, Wang P, Horstemeyer M F 2010 Polymer 51 6071

  • [1]

    Lau K T, Hui D 2002 Compos. B 33 263

    [2]

    Sun J P, Weng J B, Huang X Z, Ma L P 2009 Acta Phys. Sin. 58 6523 (in Chinese) [孙建平, 翁家宝, 黄小珠, 马琳璞 2009 物理学报 58 6523]

    [3]

    Wang J L, Xiong G P, Gu M, Zhang X, Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese) [王建立, 熊国平, 顾明, 张兴, 梁吉 2009 物理学报 58 4536]

    [4]

    Schadler L S, Giannaris S C, Ajayan P M 1998 Appl. Phys. Lett. 73 3842

    [5]

    Shaffer M S P, Windle A H 1999 Adv. Mater. 11 937

    [6]

    Gong X, Liu J, Baskaran S, Voise R D, Young J S 2000 Chem. Mater. 12 1049

    [7]

    Haggenmueller R, Gommans H H, Rinzler A G, Fischer J E, Winey K I 2000 Chem. Phys. Lett. 330 219

    [8]

    Qian D, Dichey E C, Andrews R, Rantell T 2000 Appl. Phys. Lett. 76 2868

    [9]

    Piggott M R 1995 Composites Sci. Techn. 55 269

    [10]

    Bechel V T, Sottos N R 1998 Composites Sci. Techn. 58 1727

    [11]

    Thostenson E T, Ren Z F, Chou T W 2001 Composites Sci. Techn. 61 1899

    [12]

    Ajayan P M, Schadler LS, Giannaris C, Rubio A 2000 Adv. Mater. 12 750

    [13]

    Zheng Q Z, Xue Q Z, Yan K Y, Gao X L, Li Q, Hao L Z 2008 Polymer 49 800

    [14]

    Al-Haik M, Hussaini M Y 2005 J. Appl. Phys. 97 074306

    [15]

    Lordi V, Yao N 2000 J. Mater. Res. 15 2770

    [16]

    Liao K, Li S 2001 Appl. Phys. Lett. 79 4225

    [17]

    Frankland S J V, Caglar A, Brenner D W, Griebel M 2002 J. Phys. Chem. B 106 3046

    [18]

    Frankland S J V, Harik V M 2003 Surf. Sci. 525 L103

    [19]

    Chowdhury S C, Okabe T 2007 Composites. A 38 747

    [20]

    Liu Y J, Nishimaura N, Qian D, Adachi N, Otani Y, Mokashi V 2008 Engineering Analysis with Boundary Elements 32 299

    [21]

    Gou J H, Minaie B, Wang B, Liang Z Y, Zhang C 2004 Computational Materials Sicience 31 225

    [22]

    Wei C Y 2006 Applied Physics Letters 88 093108

    [23]

    Plimpton S 1995 J. Comp Phys 117 1

    [24]

    Liao K, Li S 2001 Applied Physics Letters 79 4225

    [25]

    Kuwajima S, Noma H, Ohsaka T 1994 Proceedings of the fourth symposium of the society of computer chemistry, Japan 53

    [26]

    Allen M P, Tildesley D J 1987 Computer simulation of liquids (Clarendon Press)

    [27]

    Shepherd J E 2006 Dissertation (Georgia Institute of Technology) P39

    [28]

    Gourdon D, Israelachvili J N 2003 Physical Review E 68 021602

    [29]

    Hossain D, Tschopp M A, Ward D K, Bouvard J L, Wang P, Horstemeyer M F 2010 Polymer 51 6071

  • [1] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究. 物理学报, 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [4] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [5] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [6] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究. 物理学报, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [7] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响. 物理学报, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [8] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [9] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [10] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [11] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [12] 彭德锋, 江五贵, 彭川. 碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究. 物理学报, 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [13] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究. 物理学报, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [14] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟. 物理学报, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [15] 黄秀光, 傅思祖, 舒桦, 叶君建, 吴江, 谢志勇, 方智恒, 贾果, 罗平庆, 龙滔, 何钜华, 顾援, 王世绩. 聚乙烯冲击压缩特性实验研究. 物理学报, 2010, 59(9): 6394-6398. doi: 10.7498/aps.59.6394
    [16] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [17] 谢根全, 夏 平. 基于微极性弹性力学的碳纳米管中波的传播特性. 物理学报, 2007, 56(12): 7070-7077. doi: 10.7498/aps.56.7070
    [18] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [20] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
计量
  • 文章访问数:  6427
  • PDF下载量:  906
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-07
  • 修回日期:  2011-10-30
  • 刊出日期:  2012-06-05

碳纳米管-聚乙烯复合材料界面力学特性分析

  • 1. 江苏大学机械工程学院, 微纳米科学技术研究中心, 镇江 212013;
  • 2. 江苏科技大学船舶与海洋工程学院, 镇江 212003;
  • 3. Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT 84322
    基金项目: 国家自然科学基金(批准号: 11102074), 江苏省自然科学基金面上项目(批准号: BK2011463)和 江苏大学高级专业人才科研启动基金(批准号: 11JDG024)资助的课题.

摘要: 本文采用分子动力学模拟办法对碳纳米管-聚乙烯复合材料的界面力学特性进行了模拟和分析. 通过对单壁碳纳米管从无定形聚乙烯中抽出过程进行模拟, 研究了界面剪切应力随碳管滑移速度、聚乙烯分子链长和碳纳米管管径之间的变化关系, 并对界面的滑移机理进行了讨论. 模拟结果发现, 随着聚合物分子链长的增加, 界面临界剪切应力有显著增大, 而滑移剪切应力略显增加; 界面临界剪切应力和滑移剪切应力随着碳纳米管管径的增大而明显增加. 本文同时对界面应力的变化机理进行了模拟和讨论.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回