搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构

王颖 卢铁城 王跃忠 岳顺利 齐建起 潘磊

引用本文:
Citation:

虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构

王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊

Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation

Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei
PDF
导出引用
  • 基于密度泛函理论的第一性原理平面波赝势方法, 运用虚晶近似方法计算了AlN-Al2O3固溶区内尖晶石相氮氧化铝(Al24O24N8, Al23O27N5和Al22O30N2)和-Al2O3, AlN的力学性能和电子结构. 结果证明虚晶近似法应用到氮氧化铝结构计算中是可行的. 力学常数计算结果和弹性模量B, 剪切模量G, 杨氏模量E反映的材料硬度变化趋势与实验基本一致;Al2O3-AlN固 溶区内五种结构均为脆性性质且Al23O27N5脆性最低, 硬度高、脆性低的特性反映了Al23O27N5优异的抗弯强度性能. 五种结构满足力学结构上的稳定性, 立方尖晶石相氮氧化铝表现为弹性各向异性. 能带和态密度的计算分析表明这五种结构均为直接宽带隙结构. 在费米能级附近, 氮氧化铝结构中阴离子的2p态和阳离子的3s, 3p态发生了轨道杂化. 理论结果与实验数据基本符合, 为进一步研究提供了一定的理论方法和依据.
    Based on the density functional theory within plane-wave pesudopotential method, the band structure and elastic properties of spinel Al(64 + x)/3(8-x)/3O(32-x)Nx (x=2, 5, 8) and -Al2O3, AlN are calculated. The spinel Al(64 + x)/3(8-x)/3O(32-x)Nx (x=2, 5, 8) are calculated by using the 'virtual crystal approximation'. The results prove it possible to study the Al(64 + x)/3(8-x)/3O(32-x)Nx (x=2, 5, 8) by this approximation. The calculated elastic constants and hardness features accord well with the experimental results. The five structures in the Al2O3-AlN solid solution region all show brittle features and the Al23O27N5 shows the lowest brittleness. High hardness and low brittleness reflect that Al23O27N5 has a great flexural strength. Elastic property analysis confirms the mechanical stability, it also reveals that AlON has highly elastic anisotropy. Band structure analysis shows that the spinel AlON and -Al2O3, AlN are both direct bandgap materials. Hybridizations take place between Al-3p, 3s and O, N-2p orbitals near the Fermi level in the AlON. The calculated results are consistent with relevant experimental results, which provides a theoretical method and reference for the further study.
    • 基金项目: 国家自然科学基金(批准号: 50872083); 航空科学基金(批准号: 20100119003)和 中央高校基本科研业务费(批准号: 2009SCU11126)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50872083), the Fund of Aeronautics Science, China (Grant No. 20100119003), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2009SCU11126).
    [1]

    McCauley J M, Parimal P, Chen M W, Gilde G, Strassburger E, Paliwal B, Ramesh K B, Dandekar D P 2009 J. Eur. Ceram. Soc. 29 223

    [2]

    Corbin N D 1989 J. Eur. Ceram. Soc. 5 143

    [3]

    Onyekwelu U O, Lowther J E 2008 Phys. Rev. B 77 094129

    [4]

    Wahl J M, Hartnett T M, Goldman L M 2005 Proc. SPIE 5786 71

    [5]

    McCauley J M, Corbin N D 1979 J. Am. Ceram. Soc. 62 476

    [6]

    Hartnett T M, Maguire E A, Gentilman R L, Corbin N D, McCauley J W 1982 Cera. Eng. Sci. Proc. 3 67

    [7]

    McCauley J M 1978 J. Am. Ceram. Soc. 61 372

    [8]

    Chang M F, Rudi M, Hubertus T H, Gijsbertus D W 2001 J. Am. Ceram. Soc. 84 2633

    [9]

    Onyekwelu U O, Lowther J E 2010 Chem. Phys. Lett. 494 323

    [10]

    Pan L, Lu T C, Su R, Wang Y Z, Qi J Q, Fu J, Zhang Y, He D W 2012 Acta Phys. Sin. 61 027101 (in Chinese) [潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威 2012 物理学报 61 027101]

    [11]

    Bellaiche L 2000 Phys. Rev. B 61 7877 

    [12]

    Winkler B, Pickard C, Milman V 2002 Chem. Phys. Lett. 362 266

    [13]

    Ramer N J, Rappe A M 2000 Phys. Rev. B 62 743

    [14]

    Zhang H L, Punkkinen M P J, Johansson B, Hertzman S, Vitos L 2010 Phys. Rev. B 81 184105

    [15]

    Sin'ko G V, Smirnow N A 2002 J. Phys.: Condens Matter 14 6989

    [16]

    Ding Y C, Xiao B 2011 Acta Phys. Chim. Sin. 27 1621 (in Chinese) [丁迎春, 肖冰 2011 物理化学学报 27 1621]

    [17]

    Wang Y L, Cui H L, Yu B R, Chen X R 2008 Commun. Theor. Phys. 49 489

    [18]

    Shang S L, Wang Y, Liu Z K 2007 Appl. Phys. Lett. 89 131909

    [19]

    Gladden J R, Jin H S, Maynard J D, Saxe P W, Page Y L 2004 Appl. Phys. Lett. 85 392

    [20]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [21]

    McNeil L E, Grimsditch M, French R H 1993 J. Am. Ceram. Soc. 76 1132

    [22]

    Graham E K, Munly W C, McCauley J M, Corbin N D 1988 J. Am. Ceram. Soc. 71 807

    [23]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 物理学报 56 5376]

    [24]

    McCauley J W 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) p127

    [25]

    Pugh S F 1954 Philos. Mag. 45 823

    [26]

    Yu B H, Liu M L, Chen D 2011 Acta Phys. Sin. 60 087105 (in Chinese) [余本海, 刘墨林, 陈东 2011 物理学报 60 087105]

    [27]

    Oganov A R, Dorogokupets P I 2003 Phys. Rev. B 67 224110

    [28]

    French R H 1990 J. Am. Ceram. Soc. 73 477

    [29]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 物理学报 57 7806]

  • [1]

    McCauley J M, Parimal P, Chen M W, Gilde G, Strassburger E, Paliwal B, Ramesh K B, Dandekar D P 2009 J. Eur. Ceram. Soc. 29 223

    [2]

    Corbin N D 1989 J. Eur. Ceram. Soc. 5 143

    [3]

    Onyekwelu U O, Lowther J E 2008 Phys. Rev. B 77 094129

    [4]

    Wahl J M, Hartnett T M, Goldman L M 2005 Proc. SPIE 5786 71

    [5]

    McCauley J M, Corbin N D 1979 J. Am. Ceram. Soc. 62 476

    [6]

    Hartnett T M, Maguire E A, Gentilman R L, Corbin N D, McCauley J W 1982 Cera. Eng. Sci. Proc. 3 67

    [7]

    McCauley J M 1978 J. Am. Ceram. Soc. 61 372

    [8]

    Chang M F, Rudi M, Hubertus T H, Gijsbertus D W 2001 J. Am. Ceram. Soc. 84 2633

    [9]

    Onyekwelu U O, Lowther J E 2010 Chem. Phys. Lett. 494 323

    [10]

    Pan L, Lu T C, Su R, Wang Y Z, Qi J Q, Fu J, Zhang Y, He D W 2012 Acta Phys. Sin. 61 027101 (in Chinese) [潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威 2012 物理学报 61 027101]

    [11]

    Bellaiche L 2000 Phys. Rev. B 61 7877 

    [12]

    Winkler B, Pickard C, Milman V 2002 Chem. Phys. Lett. 362 266

    [13]

    Ramer N J, Rappe A M 2000 Phys. Rev. B 62 743

    [14]

    Zhang H L, Punkkinen M P J, Johansson B, Hertzman S, Vitos L 2010 Phys. Rev. B 81 184105

    [15]

    Sin'ko G V, Smirnow N A 2002 J. Phys.: Condens Matter 14 6989

    [16]

    Ding Y C, Xiao B 2011 Acta Phys. Chim. Sin. 27 1621 (in Chinese) [丁迎春, 肖冰 2011 物理化学学报 27 1621]

    [17]

    Wang Y L, Cui H L, Yu B R, Chen X R 2008 Commun. Theor. Phys. 49 489

    [18]

    Shang S L, Wang Y, Liu Z K 2007 Appl. Phys. Lett. 89 131909

    [19]

    Gladden J R, Jin H S, Maynard J D, Saxe P W, Page Y L 2004 Appl. Phys. Lett. 85 392

    [20]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [21]

    McNeil L E, Grimsditch M, French R H 1993 J. Am. Ceram. Soc. 76 1132

    [22]

    Graham E K, Munly W C, McCauley J M, Corbin N D 1988 J. Am. Ceram. Soc. 71 807

    [23]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 物理学报 56 5376]

    [24]

    McCauley J W 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) p127

    [25]

    Pugh S F 1954 Philos. Mag. 45 823

    [26]

    Yu B H, Liu M L, Chen D 2011 Acta Phys. Sin. 60 087105 (in Chinese) [余本海, 刘墨林, 陈东 2011 物理学报 60 087105]

    [27]

    Oganov A R, Dorogokupets P I 2003 Phys. Rev. B 67 224110

    [28]

    French R H 1990 J. Am. Ceram. Soc. 73 477

    [29]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 物理学报 57 7806]

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] 易军. 非晶纤维的制备和力学行为. 物理学报, 2017, 66(17): 178102. doi: 10.7498/aps.66.178102
    [3] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [4] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [5] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [6] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响. 物理学报, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [7] 陈华, 李保卫, 赵鸣, 张雪峰, 贾晓林, 杜永胜. La3+存在形式对白云鄂博稀选尾矿微晶玻璃性能的影响. 物理学报, 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [8] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [9] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [10] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [11] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [12] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [13] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [14] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [15] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [16] 马国佳, 刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉. 乙炔气体流量对纳米TiC类金刚石复合膜的化学结构及力学性能影响. 物理学报, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [17] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [18] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  5814
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-18
  • 修回日期:  2012-01-20
  • 刊出日期:  2012-08-05

虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构

  • 1. 四川大学物理系, 辐射物理及技术教育部重点实验室, 成都 610064;
  • 2. 中国科学院国际材料物理中心, 沈阳 110015;
  • 3. 四川大学物理系, 高能量密度与物理技术教育部重点实验室, 成都 610064
    基金项目: 国家自然科学基金(批准号: 50872083); 航空科学基金(批准号: 20100119003)和 中央高校基本科研业务费(批准号: 2009SCU11126)资助的课题.

摘要: 基于密度泛函理论的第一性原理平面波赝势方法, 运用虚晶近似方法计算了AlN-Al2O3固溶区内尖晶石相氮氧化铝(Al24O24N8, Al23O27N5和Al22O30N2)和-Al2O3, AlN的力学性能和电子结构. 结果证明虚晶近似法应用到氮氧化铝结构计算中是可行的. 力学常数计算结果和弹性模量B, 剪切模量G, 杨氏模量E反映的材料硬度变化趋势与实验基本一致;Al2O3-AlN固 溶区内五种结构均为脆性性质且Al23O27N5脆性最低, 硬度高、脆性低的特性反映了Al23O27N5优异的抗弯强度性能. 五种结构满足力学结构上的稳定性, 立方尖晶石相氮氧化铝表现为弹性各向异性. 能带和态密度的计算分析表明这五种结构均为直接宽带隙结构. 在费米能级附近, 氮氧化铝结构中阴离子的2p态和阳离子的3s, 3p态发生了轨道杂化. 理论结果与实验数据基本符合, 为进一步研究提供了一定的理论方法和依据.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回