搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神光Ⅱ间接驱动内爆实验ArX射线谱线模拟研究

乔秀梅 郑无敌 高耀明 叶文华

引用本文:
Citation:

神光Ⅱ间接驱动内爆实验ArX射线谱线模拟研究

乔秀梅, 郑无敌, 高耀明, 叶文华

Simulation of spectrum of doped Ar in indirectly driven implosion target

Qiao Xiu-Mei, Zheng Wu-Di, Gao Yao-Ming, Ye Wen-Hua
PDF
导出引用
  • ICF内爆物理研究中,示踪元素X射线谱诊断方法是推测内爆压缩温度、 密度以及燃料混合状态的有效方法.针对其中的非平衡物理过程, 研制了非局域热动平衡(non-LTE)下一维谱线输运程序Alpha.程序以辐射流体计算给出的温度、 密度等量为输入条件,求解细致组态(DCA)模型下的原子动力学方程和辐射输运方程, 自洽给出谱线不透明度,和成像面上的X射线谱分布.利用该程序,模拟了神光Ⅱ装置上的掺Ar靶丸内爆示踪元素X射线谱诊断实验, 研究结果表明,谱线的自吸收效应影响发射的X射线谱的强度和形状, 谱线的宽度对自吸收效应的强弱也有影响.因此,在对X射线谱的数值模拟中应该考虑自吸收效应. 另外,与LTE近似下的发射谱的比较表明, LTE近似下,等离子体电离度大~1, 发射谱的形状与non-LTE的结果不同,且LTE近似下,谱线的强度比non-LTE的谱线强度大5-10倍, 采用LTE近似是不合适的.
    X-ray spectrum of tracer in ICF implosion target is usually used to infer electron temperature, density and mix of fuel. As the plasma in fuel is in non-local thermodynamic equilibrium (non-LTE), a line transfer code Alpha is developed. Taking the electron temperature and density provided by radiation hydrodynamic as input condition, atomic kinetics and radiation transfer equation are self-consistently solved with the detailed configuration atom (DCA) model. The opacity for specified frequency intervals is obtained, and X-ray spectrum in the image plane is also presented.As application of Alpha program, the spectrum of doped Ar in implosion target on SG Ⅱ laser facility is simulated. The effect of self-absorption of K α line is studied. And it is shown that self-absorption of K α line affects both the intensity and shape of the spectrum, and it should be considered in simulating X-ray spectrum of Ar. And as the spectrum of local thermodynamic equilibrium (LTE) simulation gives large intensity and different shapes compared with the non-LTE results, non-LTE simulation is necessary in such a simulation.
    • 基金项目: 国家自然科学基金(批准号: 10901021)和国家高技术研究发展计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10901021), and the National High Technology Research and Development Program of China.
    [1]

    Hammel B A, Keane C J, Dittrich T R, Kania D R, Kilkenny J D, Lee R W, Kevedahl W K 1994 JQSRT 51 113

    [2]

    Woolsey N C, Hammel B A, Keane C J, Asfaw A, Back C A, Moreno J C, Nash J K, Calisti A, Mossé C, Stamm R, Talin B, Klein L, Lee R W 1997 Phys. Rev. E 56 2314

    [3]

    Welser-Sherrill L, Mancini R C, Koch J A, Izumi N, Tommasini R, Haan S W, Haynes D A, Golovkin I E, Macfarlane J J, Delettrez J A, Marshall F J, Regan S P, Smalyuk V A, Kyrala G 2007 Phys. Rew. E 76 056403

    [4]

    Florido R, Mancini R C, Nagayama T, Tommasini R, Delettrez J A, Regan S P, Yaakobi B 2011 Phys. Rev. E 83 066408

    [5]

    Hammel B A, Scott H A, Regan S P, Cerjan C, Clark D S, Edwards M J, Epstein R, Glenzer S H, Haan S W, Izumi N, Koch J A, Kyrala G A, Landen O L, Langer S H, Peterson K, Smalyuk V A, Suter L J, Wilson D C 2011 Phys. Plasmas 18 056310

    [6]

    Keane C J, Pollak G W, Cook R C, Dittrich T R, Hammel B A, Landen L, Langer S H, Levedahl W K, Munro D H, Scott H A, Zimmerman G B 1995 JQSRT 54 207

    [7]

    Langer S H, Scott H A, Marinak M M, Landen O L 2001 JQSRT 71 479

    [8]

    Langer S H, Scott H A, Marinak M M, Landen O L 2003 JQSRT 81 275

    [9]

    Zhang J Y, Yang G H, Miao W Y, Ding Y N 2006 High Power Laser and Particle Beams 18 939 (in Chinese) [张继彦, 杨国洪, 缪文勇, 丁耀南 2006 强激光与粒子束 18 939]

    [10]

    Gao Y M, Li M, Li Y S, Kang D G, Li Y S 2001 High Power Laser and Particle Beams 23 693 (in Chinese) [高耀明, 李蒙, 李永升, 康洞国, 李沄生 2011 强激光与粒子束 23 693]

    [11]

    Duan B, Wu Z Q, Wang J G 2009 Chin. Sci. G 39(1) 43 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑 39(1) 43]

    [12]

    Duan B, Wu Z Q, Wang J G 2009 Chin. Sci. G 39 241 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑 39 241]

    [13]

    Zhou J Y, Huang T X, Meng L 2008 High Power Laser and Particle Beams 20 1658 (in Chinese) [周近宇, 黄天眩, 蒙林 2008 强激光与粒子束 20 1658]

    [14]

    Gao Y M, Lü X, Li Y S, Li M 2007 High Power Laser and Particle Beams 19 1858 (in Chinese) [高耀明, 吕信, 李沄生, 李蒙 2007 强激光与粒子束 19 1858]

    [15]

    Scott H A 2001 JQSRT 71 689

    [16]

    Scott H A, Mayle R W 1994 Appl. Phys. B 58 35

    [17]

    Macfarlane J J, Golovkin I E, Woodruff P R 2006 JQSRT 99 381

    [18]

    Macfarlane J J, GolovkinI E, Wang P, Woodruff P R, Pereyra N A 2007 HEDP 3 181

    [19]

    Peyrusse O 1992 Phys. Fluids B 4 2007

    [20]

    Pollak G D, Delamater N D, Nash J K, Hammel B A 1994 JQSRT 51 303

    [21]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 HEDP 1 3

    [22]

    Dittrich T R, Hammel B A, Keane C J, McEachern R, Turner R E, Haan S W, Suter L J 1994 Phys. Rev. Lett. 73 2324

    [23]

    Scott H A, Hansen S B 2010 HEDP 6 39

    [24]

    MacFarlane J J, Golovkin I E, Mancini R C, Welser L A, Bailey J E, Koch J A, Mehlhorn T A, Rochau G A, Wang P, Woodruff P 2005 Phys. Rew. E 72 066403

    [25]

    Zhang G P, Zhang T X, Zheng W D 2004 High Power Laser and Particle Beams 16 35 (in Chinese) [张国平, 张覃鑫, 郑无敌 2004 强激光与粒子束 16 35]

    [26]

    Qiao X M, Zhang G P 2007 Acta Phys. Sin. 56 5248 (in Chinese) [乔秀梅, 张国平 2007 物理学报 56 5248]

    [27]

    Zhang G P, Zhang T X, Zheng W D, Qiao X M 2007 Chin. Phys. 16 2433

    [28]

    Calisti A, Khelfaoui F, stamm R, Talin B, Lee R W 1990 Phys. Rev. A 42 5433

    [29]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosses C, Godbert L, Stamm R, Talin B, Hooper C F, Asfaw A, Klein L S, Lee R W 1997 JQSRT 58 975

  • [1]

    Hammel B A, Keane C J, Dittrich T R, Kania D R, Kilkenny J D, Lee R W, Kevedahl W K 1994 JQSRT 51 113

    [2]

    Woolsey N C, Hammel B A, Keane C J, Asfaw A, Back C A, Moreno J C, Nash J K, Calisti A, Mossé C, Stamm R, Talin B, Klein L, Lee R W 1997 Phys. Rev. E 56 2314

    [3]

    Welser-Sherrill L, Mancini R C, Koch J A, Izumi N, Tommasini R, Haan S W, Haynes D A, Golovkin I E, Macfarlane J J, Delettrez J A, Marshall F J, Regan S P, Smalyuk V A, Kyrala G 2007 Phys. Rew. E 76 056403

    [4]

    Florido R, Mancini R C, Nagayama T, Tommasini R, Delettrez J A, Regan S P, Yaakobi B 2011 Phys. Rev. E 83 066408

    [5]

    Hammel B A, Scott H A, Regan S P, Cerjan C, Clark D S, Edwards M J, Epstein R, Glenzer S H, Haan S W, Izumi N, Koch J A, Kyrala G A, Landen O L, Langer S H, Peterson K, Smalyuk V A, Suter L J, Wilson D C 2011 Phys. Plasmas 18 056310

    [6]

    Keane C J, Pollak G W, Cook R C, Dittrich T R, Hammel B A, Landen L, Langer S H, Levedahl W K, Munro D H, Scott H A, Zimmerman G B 1995 JQSRT 54 207

    [7]

    Langer S H, Scott H A, Marinak M M, Landen O L 2001 JQSRT 71 479

    [8]

    Langer S H, Scott H A, Marinak M M, Landen O L 2003 JQSRT 81 275

    [9]

    Zhang J Y, Yang G H, Miao W Y, Ding Y N 2006 High Power Laser and Particle Beams 18 939 (in Chinese) [张继彦, 杨国洪, 缪文勇, 丁耀南 2006 强激光与粒子束 18 939]

    [10]

    Gao Y M, Li M, Li Y S, Kang D G, Li Y S 2001 High Power Laser and Particle Beams 23 693 (in Chinese) [高耀明, 李蒙, 李永升, 康洞国, 李沄生 2011 强激光与粒子束 23 693]

    [11]

    Duan B, Wu Z Q, Wang J G 2009 Chin. Sci. G 39(1) 43 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑 39(1) 43]

    [12]

    Duan B, Wu Z Q, Wang J G 2009 Chin. Sci. G 39 241 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑 39 241]

    [13]

    Zhou J Y, Huang T X, Meng L 2008 High Power Laser and Particle Beams 20 1658 (in Chinese) [周近宇, 黄天眩, 蒙林 2008 强激光与粒子束 20 1658]

    [14]

    Gao Y M, Lü X, Li Y S, Li M 2007 High Power Laser and Particle Beams 19 1858 (in Chinese) [高耀明, 吕信, 李沄生, 李蒙 2007 强激光与粒子束 19 1858]

    [15]

    Scott H A 2001 JQSRT 71 689

    [16]

    Scott H A, Mayle R W 1994 Appl. Phys. B 58 35

    [17]

    Macfarlane J J, Golovkin I E, Woodruff P R 2006 JQSRT 99 381

    [18]

    Macfarlane J J, GolovkinI E, Wang P, Woodruff P R, Pereyra N A 2007 HEDP 3 181

    [19]

    Peyrusse O 1992 Phys. Fluids B 4 2007

    [20]

    Pollak G D, Delamater N D, Nash J K, Hammel B A 1994 JQSRT 51 303

    [21]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 HEDP 1 3

    [22]

    Dittrich T R, Hammel B A, Keane C J, McEachern R, Turner R E, Haan S W, Suter L J 1994 Phys. Rev. Lett. 73 2324

    [23]

    Scott H A, Hansen S B 2010 HEDP 6 39

    [24]

    MacFarlane J J, Golovkin I E, Mancini R C, Welser L A, Bailey J E, Koch J A, Mehlhorn T A, Rochau G A, Wang P, Woodruff P 2005 Phys. Rew. E 72 066403

    [25]

    Zhang G P, Zhang T X, Zheng W D 2004 High Power Laser and Particle Beams 16 35 (in Chinese) [张国平, 张覃鑫, 郑无敌 2004 强激光与粒子束 16 35]

    [26]

    Qiao X M, Zhang G P 2007 Acta Phys. Sin. 56 5248 (in Chinese) [乔秀梅, 张国平 2007 物理学报 56 5248]

    [27]

    Zhang G P, Zhang T X, Zheng W D, Qiao X M 2007 Chin. Phys. 16 2433

    [28]

    Calisti A, Khelfaoui F, stamm R, Talin B, Lee R W 1990 Phys. Rev. A 42 5433

    [29]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosses C, Godbert L, Stamm R, Talin B, Hooper C F, Asfaw A, Klein L S, Lee R W 1997 JQSRT 58 975

  • [1] 王雅琴, 胡广月, 赵斌, 郑坚. 神光Ⅲ激光装置直接驱动内爆靶产生的连续谱X光源. 物理学报, 2017, 66(11): 115202. doi: 10.7498/aps.66.115202
    [2] 晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅. 氘氘-塑料靶丸变收缩比内爆物理实验研究. 物理学报, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [3] 乔秀梅, 郑无敌, 高耀明. 间接驱动内爆靶丸示踪元素Ar发射X光谱线的理论模拟研究. 物理学报, 2015, 64(4): 045201. doi: 10.7498/aps.64.045201
    [4] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [5] 但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平. Z箍缩内爆产生的电磁脉冲辐射. 物理学报, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [6] 陈永涛, 任国武, 汤铁钢, 胡海波. 爆轰加载下金属样品的熔化破碎现象诊断. 物理学报, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [7] 庞哲, 王爽, 李辉, 徐春华, 李明. 用荧光显微示踪方法研究RecA在DNA同源识别过程中的工作机理. 物理学报, 2012, 61(21): 218701. doi: 10.7498/aps.61.218701
    [8] 董建军, 曹柱荣, 杨正华, 陈伯伦, 黄天暄, 邓博, 刘慎业, 江少恩, 丁永坤, 伊圣振, 穆宝忠. 辐射驱动内爆流线实验测量. 物理学报, 2012, 61(15): 155208. doi: 10.7498/aps.61.155208
    [9] 景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博. 神光-Ⅱ和神光-Ⅲ原型内爆对称性实验的模型分析. 物理学报, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [10] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [11] 曹思, 龚佳, 钟澄, 李劲, 蒋益明. 同位素示踪法研究铜薄膜在水汽中的氧化传质机理. 物理学报, 2011, 60(7): 078101. doi: 10.7498/aps.60.078101
    [12] 盛亮, 王亮平, 李阳, 彭博栋, 张美, 吴坚, 王培伟, 魏福利, 袁媛. 平面丝阵负载Z箍缩内爆动力学一维图像诊断. 物理学报, 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [13] 赵艳红, 刘海风, 张弓木. 基于统计物理的爆轰产物物态方程研究. 物理学报, 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [14] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数. 物理学报, 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [15] 姜旻昊, 孟续军. 用Hartree-Fock-Slater-Boltzmann-Saha模型研究等离子体细致组态原子结构及其状态方程. 物理学报, 2005, 54(2): 587-593. doi: 10.7498/aps.54.587
    [16] 滕浩, 曹磊峰, 成金秀, 陈家斌, 杨向东, 刘忠礼, 郑志坚. 激光聚变爆推靶内爆区空间分布的测量. 物理学报, 2002, 51(4): 835-838. doi: 10.7498/aps.51.835
    [17] 祁兰英, 陈家斌, 蒋小华, 刘慎业, 郑志坚, 张保汉, 丁永坤, 李朝光, 王大海, 朱森昌, 张家泰. “神光Ⅱ”首轮基频光驱动内爆实验超热电子诊断. 物理学报, 2002, 51(9): 2068-2073. doi: 10.7498/aps.51.2068
    [18] 杨洪琼, 杨建伦, 温树槐, 王根兴, 郭玉芝, 唐正元, 牟维兵, 马驰. 激光直接驱动内爆DT燃料面密度诊断. 物理学报, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
    [19] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [20] 林尊琪, 张燕珍, 毕无忌, 陆海鹤, 何兴法, 赵志文, 韦小春, 施阿英, 王笑琴, 林康春, 李家明, 董骐. 激光内爆靶的四分幅X射线阴影成像诊断实验和理论模拟. 物理学报, 1988, 37(1): 20-28. doi: 10.7498/aps.37.20
计量
  • 文章访问数:  3291
  • PDF下载量:  476
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-29
  • 修回日期:  2012-03-01
  • 刊出日期:  2012-09-05

神光Ⅱ间接驱动内爆实验ArX射线谱线模拟研究

  • 1. 北京应用物理与计算数学研究所, 北京 100094
    基金项目: 国家自然科学基金(批准号: 10901021)和国家高技术研究发展计划资助的课题.

摘要: ICF内爆物理研究中,示踪元素X射线谱诊断方法是推测内爆压缩温度、 密度以及燃料混合状态的有效方法.针对其中的非平衡物理过程, 研制了非局域热动平衡(non-LTE)下一维谱线输运程序Alpha.程序以辐射流体计算给出的温度、 密度等量为输入条件,求解细致组态(DCA)模型下的原子动力学方程和辐射输运方程, 自洽给出谱线不透明度,和成像面上的X射线谱分布.利用该程序,模拟了神光Ⅱ装置上的掺Ar靶丸内爆示踪元素X射线谱诊断实验, 研究结果表明,谱线的自吸收效应影响发射的X射线谱的强度和形状, 谱线的宽度对自吸收效应的强弱也有影响.因此,在对X射线谱的数值模拟中应该考虑自吸收效应. 另外,与LTE近似下的发射谱的比较表明, LTE近似下,等离子体电离度大~1, 发射谱的形状与non-LTE的结果不同,且LTE近似下,谱线的强度比non-LTE的谱线强度大5-10倍, 采用LTE近似是不合适的.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回