搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型双异质结高电子迁移率晶体管的电流崩塌效应研究

余晨辉 罗向东 周文政 罗庆洲 刘培生

引用本文:
Citation:

新型双异质结高电子迁移率晶体管的电流崩塌效应研究

余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生

Investigation on the current collapse effect of AlGaN/GaN/InGaN/GaN double-heterojunction HEMTs

Yu Chen-Hui, Luo Xiang-Dong, Zhou Wen-Zheng, Luo Qing-Zhou, Liu Pei-Sheng
PDF
导出引用
  • 针对传统单结GaN基高电子迁移率晶体管器件性能受电流崩塌效应和自加热效应限制的困境, 对新型AlGaN/GaN/InGaN/GaN双异质结高电子迁移率晶体管的直流性质展开了系统研究. 采用基于热电子效应和自加热效应的流体动力模型,研究了器件在不同偏压下电流崩塌和负微分电导效应与 GaN沟道层厚度的相关.研究发现具有高势垒双异质的沟道层能更好地将电子限制在沟道中, 显著减小高电场下热电子从沟道层向GaN缓冲层的穿透能力.提高GaN沟道层厚度可以有效抑制电流崩塌 和和负微分输出电导,进而提高器件在高场作用下的性能.所得结果 为进一步优化双异质结高电子迁移率晶体管结构提供了新思路,可促进新型GaN高电子迁移率晶体管器件 在高功率、高频和高温等无线通讯领域内的广泛应用.
    A series of AlGaN/GaN/InGaN/GaN double-heterojunction high-electron-mobility-transistors (DH-HEMT) is fabricated with GaN channel layer thicknesses from 6 nm to 20 nm by two-dimensional (2D) numerical simulations. A new idea for optimizating of DH-HEMT structure is proposed. The hot electron effect and self-heating effect are investigated by using hydrodynamic model. Current collapse and negative differential conductance are observed to be directly relevant to GaN channel layer thickness. DH-HEMT with thicker GaN channel layer can confine electrons better in channel, which significantly diminishes the penetration ability of hot electrons from channel layer to buffer layer under high voltage. Increasing the thickness of GaN channel layer appropriately can effectively restrict current collapse and negative differential conductance, and consequently improve device performance under high voltage condition.
    • 基金项目: 国家自然科学基金(批准号: 11104150, 60906045)和江苏省自然科学基金(批准号: BK2010571)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104150, 60906045) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010571).
    [1]

    Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022

    [2]

    Liberis J, Matulionienė I, Matulionis A, Šermukšnis E, Xie J, Leach J H, Morkoc H 2009 Phys. Stat. Sol. A 206 1385

    [3]

    Liu J, Zhou Y, Zhu J, Lau K M, Chen K J 2006 IEEE Electr. Dev. Lett. 27 10

    [4]

    Medjdoub F, Derluyn J, Cheng K, Leys M, Degroote S, Marcon D, Visalli D, van Hove M, Germain M, Borghs G 2010 IEEE Electr. Dev. Lett. 31 111

    [5]

    Brown D F, Shinohara K, Williams A, Milosavljevic I, Grabar R, Hashimoto P, Willadsen P J, Schmitz A, Corrion A L, Kim S, Regan D, Butler C M, Burnham S D, Micovic M 2011 IEEE T. Electron. Dev. 58 1063

    [6]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [7]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [8]

    Faqir M, Bouya M, Malbert N, Labat N, Carisetti D, Lambert B, Verzellesi G, Fantini F 2010 Microelectron. Reliab. 50 1520

    [9]

    Hu W D, Chen X S, Yin F, Zhang J B, Lu W 2009 J. Appl. Phys. 105 084502

    [10]

    Binari S C, Ikossi K, Roussos J A, Kruppa W, Doewon P, Dietrich H B, Koleske D D, Wickenden A E, Henry R L 2001 IEEE T. Electron. Dev. 48 465

    [11]

    Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE 90 1048

    [12]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE T. Electron. Dev. 48 560

    [13]

    Hu X, Koudymov A, Simin G, Yang J, Khan M A, Tarakji A, Shur M S, Gaska R 2001 Appl. Phys. Lett. 79 2832

    [14]

    Kuzmik J, Javorka R, Alam A, Marso M, Heuken M, Kordos P 2002 IEEE T. Electron. Dev. 49 1496

    [15]

    Wu X H, Brown L M, Kapolnek D, Keller S, Keller B, DenBaars S P, Speck J S 1996 J. Appl. Phys. 80 3228

    [16]

    Klein P B, Binari S C, Ikossi K, Wickenden A E, Koleske D D, Henry R L 2001 Appl. Phys. Lett. 79 3527

    [17]

    Tang J, Wang X L, Chen T S, Xiao H L, Ran J X, Zhang M L, Hu G X, Feng C, Hou Q, Wei M, Li J M, Wang Z G 2008 9th International Conference on Solid-State and Integrated-Circuit Technology Beijing, China, 20-23 Oct. 2008 p1114

    [18]

    Zhang S, Li M C, Feng Z H, Liu B, Yin J Y, Zhao L C 2009 Appl. Phys. Lett. 95 212101

    [19]

    Faraclas E W, Anwar A F M 2006 Solid State Electron. 50 1051

    [20]

    Wang L, Hu W D, Chen X S, Lu W 2010 Acta Phys. Sin. 59 5730 (in Chinese) [王林, 胡伟达, 陈效双, 陆卫 2010 物理学报 59 5730]

    [21]

    Wang L, Hu W D, Chen X S, Lu W 2010 J. Appl. Phys. 108 054501

    [22]

    Liu J, Zhou Y, Zhu J, Cai Y, Lau K M, Chen K J 2007 IEEE T. Electron. Dev. 54 2

    [23]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222

    [24]

    Braga N, Mickevicius R, Gaska R, Hu X, Shur M S, Khan M A, Simin G, Yang J 2004 J. Appl. Phys. 95 6409

    [25]

    Wang L, Hu W D, Chen X S, Lu W 2012 J. Electron. Mater. 41 2130

    [26]

    Barry E A, Kim K W, Kochelap V A 2002 Appl. Phys. Lett. 80 2317

    [27]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE T. Electron. Dev. 59 1393

  • [1]

    Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022

    [2]

    Liberis J, Matulionienė I, Matulionis A, Šermukšnis E, Xie J, Leach J H, Morkoc H 2009 Phys. Stat. Sol. A 206 1385

    [3]

    Liu J, Zhou Y, Zhu J, Lau K M, Chen K J 2006 IEEE Electr. Dev. Lett. 27 10

    [4]

    Medjdoub F, Derluyn J, Cheng K, Leys M, Degroote S, Marcon D, Visalli D, van Hove M, Germain M, Borghs G 2010 IEEE Electr. Dev. Lett. 31 111

    [5]

    Brown D F, Shinohara K, Williams A, Milosavljevic I, Grabar R, Hashimoto P, Willadsen P J, Schmitz A, Corrion A L, Kim S, Regan D, Butler C M, Burnham S D, Micovic M 2011 IEEE T. Electron. Dev. 58 1063

    [6]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [7]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [8]

    Faqir M, Bouya M, Malbert N, Labat N, Carisetti D, Lambert B, Verzellesi G, Fantini F 2010 Microelectron. Reliab. 50 1520

    [9]

    Hu W D, Chen X S, Yin F, Zhang J B, Lu W 2009 J. Appl. Phys. 105 084502

    [10]

    Binari S C, Ikossi K, Roussos J A, Kruppa W, Doewon P, Dietrich H B, Koleske D D, Wickenden A E, Henry R L 2001 IEEE T. Electron. Dev. 48 465

    [11]

    Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE 90 1048

    [12]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE T. Electron. Dev. 48 560

    [13]

    Hu X, Koudymov A, Simin G, Yang J, Khan M A, Tarakji A, Shur M S, Gaska R 2001 Appl. Phys. Lett. 79 2832

    [14]

    Kuzmik J, Javorka R, Alam A, Marso M, Heuken M, Kordos P 2002 IEEE T. Electron. Dev. 49 1496

    [15]

    Wu X H, Brown L M, Kapolnek D, Keller S, Keller B, DenBaars S P, Speck J S 1996 J. Appl. Phys. 80 3228

    [16]

    Klein P B, Binari S C, Ikossi K, Wickenden A E, Koleske D D, Henry R L 2001 Appl. Phys. Lett. 79 3527

    [17]

    Tang J, Wang X L, Chen T S, Xiao H L, Ran J X, Zhang M L, Hu G X, Feng C, Hou Q, Wei M, Li J M, Wang Z G 2008 9th International Conference on Solid-State and Integrated-Circuit Technology Beijing, China, 20-23 Oct. 2008 p1114

    [18]

    Zhang S, Li M C, Feng Z H, Liu B, Yin J Y, Zhao L C 2009 Appl. Phys. Lett. 95 212101

    [19]

    Faraclas E W, Anwar A F M 2006 Solid State Electron. 50 1051

    [20]

    Wang L, Hu W D, Chen X S, Lu W 2010 Acta Phys. Sin. 59 5730 (in Chinese) [王林, 胡伟达, 陈效双, 陆卫 2010 物理学报 59 5730]

    [21]

    Wang L, Hu W D, Chen X S, Lu W 2010 J. Appl. Phys. 108 054501

    [22]

    Liu J, Zhou Y, Zhu J, Cai Y, Lau K M, Chen K J 2007 IEEE T. Electron. Dev. 54 2

    [23]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222

    [24]

    Braga N, Mickevicius R, Gaska R, Hu X, Shur M S, Khan M A, Simin G, Yang J 2004 J. Appl. Phys. 95 6409

    [25]

    Wang L, Hu W D, Chen X S, Lu W 2012 J. Electron. Mater. 41 2130

    [26]

    Barry E A, Kim K W, Kochelap V A 2002 Appl. Phys. Lett. 80 2317

    [27]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE T. Electron. Dev. 59 1393

  • [1] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [2] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [3] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [4] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [5] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理. 物理学报, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [6] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [7] 王冲, 赵梦荻, 裴九清, 何云龙, 李祥东, 郑雪峰, 毛维, 马晓华, 张进成, 郝跃. AlGaN/GaN双异质结F注入增强型高电子迁移率晶体管. 物理学报, 2016, 65(3): 038501. doi: 10.7498/aps.65.038501
    [8] 石磊, 冯士维, 石帮兵, 闫鑫, 张亚民. 开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究. 物理学报, 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [9] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [10] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [11] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [12] 曹磊, 刘红侠. 新型SOANN埋层SOI器件的自加热效应研究. 物理学报, 2012, 61(17): 177301. doi: 10.7498/aps.61.177301
    [13] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究. 物理学报, 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [14] 顾江, 王强, 鲁宏. AlGaN/GaN 高速电子迁移率晶体管器件电流坍塌效应与界面热阻和温度的研究. 物理学报, 2011, 60(7): 077107. doi: 10.7498/aps.60.077107
    [15] 郝立超, 段俊丽. 表面电荷与体陷阱对GaN基HEMT器件热电子和量子效应的影响研究. 物理学报, 2010, 59(4): 2746-2752. doi: 10.7498/aps.59.2746
    [16] 魏 巍, 林若兵, 冯 倩, 郝 跃. 场板结构AlGaN/GaN HEMT的电流崩塌机理. 物理学报, 2008, 57(1): 467-471. doi: 10.7498/aps.57.467
    [17] 席光义, 任 凡, 郝智彪, 汪 莱, 李洪涛, 江 洋, 赵 维, 韩彦军, 罗 毅. AlGaN表面坑状缺陷及GaN缓冲层位错缺陷对AlGaN/GaN HEMT电流崩塌效应的影响. 物理学报, 2008, 57(11): 7238-7243. doi: 10.7498/aps.57.7238
    [18] 李若凡, 杨瑞霞, 武一宾, 张志国, 许娜颖, 马永强. 用逆压电极化模型对AlGaN/GaN 高电子迁移率晶体管电流崩塌现象的研究. 物理学报, 2008, 57(4): 2450-2455. doi: 10.7498/aps.57.2450
    [19] 郝 跃, 韩新伟, 张进城, 张金凤. AlGaN/GaN HEMT器件直流扫描电流崩塌机理及其物理模型. 物理学报, 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [20] 焦一鸣, 龙永兴, 董家齐, 石秉仁, 高庆弟. 俘获电子效应对低杂波电流驱动的影响. 物理学报, 2005, 54(1): 180-185. doi: 10.7498/aps.54.180
计量
  • 文章访问数:  7330
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-19
  • 修回日期:  2012-08-05
  • 刊出日期:  2012-10-05

/

返回文章
返回