搜索

x
中国物理学会期刊

晶界滞弹性弛豫理论的现代进展

CSTR: 32037.14.aps.61.246202

Progress in the theory of grain boundary anelastic relaxation

CSTR: 32037.14.aps.61.246202
PDF
导出引用
  • 上世纪中期, 人们通过扭摆试验测量内耗, 发现晶界滞弹性弛豫峰. 后来尽管很多学者提出了各种理论模型, 但晶界滞弹性弛豫的微观机理仍然是不清楚的. 最近, Xu根据弹性应力引起晶界溶质偏聚或贫化实验结果, 提出了晶界滞弹性弛豫的微观机理是晶界吸收或发射空位, 建立了晶界滞弹性弛豫的平衡方程和动力学方程, 解析地表述了晶界滞弹性弛豫过程, 并成功地阐明了普遍存在于金属中的中温脆性峰温度移动现象. 本文将综述晶界滞弹性弛豫理论的这一现代发展.

     

    In the middle of last century, some scientists discovered grain-boundary anelastic relaxation (GAR) peaks by means of torsional pendulum. Later, various models about the origin of GAR peaks are established through further research. However, its micro-mechanism is still unclear. Recently, according to the results of solute grain boundary segregation or dilution caused by elastic stress, a micro-mechanism of GAR which is grain-boundary absorbing or emitting vacancies has been proposed. Then, the equilibrium equations and the kinetic equations of GAR are established, and the process of GAR is expressed analytically. Furthermore, it has successfully elaborated the intermediate temperature embrittlement peak movement which exists widely in metals. Those developments of GAR theory are reviewed in the present paper.

     

    目录

    /

    返回文章
    返回