搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟

周婷婷 黄风雷

引用本文:
Citation:

HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟

周婷婷, 黄风雷

Thermal expansion behaviors and phase transitions of HMX polymorphs via ReaxFF molecular dynamics simulations

Zhou Ting-Ting, Huang Feng-Lei
PDF
导出引用
  • HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) 晶体不同晶型对温度的响应对于深入认识含能材料在外加载荷下的感度、稳定性、 相变等具有重要意义. 采用ReaxFF-lg势函数和等温等压分子动力学 (NPT-MD) 方法, 研究了-, -和-HMX三种固态晶型在T=303503 K内的晶体结构和分子结构. 结果表明, ReaxFF-lg势函数能够合理地描述HMX晶体的热膨胀行为, 计算得到的晶体结构和热膨胀系数与实验数据比较符合. 三种晶型的线膨胀系数表明, -HMX晶体具有明显的热膨胀各向异性; -HMX晶体c轴的热膨胀特性与a, b轴略有不同; -HMX晶体三个方向的热膨胀特性基本相同. 三种晶型的体膨胀系数为-HMX -HMX HMX, 表明-HMX晶体对温度最敏感, 这可能是-HMX晶体具有更高感度的原因. 在T=443 K时, HMX晶体的晶胞参数突变, 且部分分子构型由椅式转变为船式-椅式. 采用两相热力学模型 (2PT) 得到的亥姆赫兹自由能表明, HMX晶体在 T=423443 K时发生相变. , -和-HMX晶体分别在T=303423 K, T=443503 K和T=363423 K内稳定存在.
    The response to temperature of HMX polymorph is important for understanding the sensitivity, stability, and phase transitions of energetic material. Using ReaxFF-lg with isothermal-isobaric molecular dynamics (NPT-MD) methods, the crystal and molecular structures of -, -, and -HMX crystals in a temperature range of 303-503 K and at atmospheric pressure are investigated. The calculated crystal structures and thermal expansion coefficients are in general agreements with experimental results, indicating that ReaxFF-lg potential can correctly describe the thermal expansion of HMX polymorph. The linear thermal expansion coefficients indicate that the thermal expansion of -HMX is anisotropic, the thermal expansion along c axis is slightly different from those for a and b axes for -HMX, and the thermal expansion along a, b, and c axes are almost the same for -HMX. The volume expansion coefficients for the three phases decrease in the following sequence: -HMX-HMXHMX, showing that -HMX is the most sensitive to temperature in the three crystals, which may be the reason for higher sensitivity of this phase. Sharp changes in lattice parameter and molecular conformation transformation from chair to boat-chair occur for HMX when temperature reaches 443 K. Helmholtz free energy derived from the two-phase thermodynamics (2PT) model suggests a phase transition for HMX at T=423-443 K. The , -, and -HMX crystals are stable in the temperature ranges of 303-423 K, 443-503 K, and 363-423 K, respectively.
    • 基金项目: 国家自然科学基金重点项目(批准号: 10832003)资助的课题.
    • Funds: Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 10832003).
    [1]

    Peiris S M, Piermarini G J 2008 Static Compression of Energetic Materails (Berlin: Springer-Verlag) p113-115

    [2]

    Cady H H, Smith L C 1962 Studies on the Polymorphs of HMX. Los Alamos Scientific Laboratory Report, LAMS-2652 TID-4500, Los Alamos National Laboratory, Los Alamos, NM, 1962

    [3]

    Goetz F, Brill T B, Ferraro J R 1978 J. Phys. Chem. 82 1912

    [4]

    Choi C S, Boutin H P 1970 Acta. Cryst. B 26 1235

    [5]

    Main P, Cobbledick R E, Small R W H 1985 Acta. Cryst. C41 1351

    [6]

    Saw C K 2002 Kinetics of HMX and Phase Transitions: Effects of Grain Size at Elevated Temperature. In 12th International Detonation Symposium, San Diego, CA, Aug 11-16, 2002

    [7]

    Herrmann M, Engel W, Eisenreich N 1993 Zeitschrift fr Kristallographie 204 121

    [8]

    Landers A G, Brill T B 1980 J. Phys. Chem. 84 3573

    [9]

    Yoo C S, Cynn H 1999 J. Chem. Phys. 111 10229

    [10]

    Gump J C, Peiris S M 2005 J. Appl. Phys. 97 053513

    [11]

    Cui H L, Ji G F, Chen X R, Zhang Q M, Wei D Q, Zhao F 2010 J. Chem. Eng. Data. 55 3121

    [12]

    Sewell T D 1998 J. Appl. Phys. 83 4142

    [13]

    Sorescu D C, Rice B M, Thompson D L 1998 J. Phys. Chem. B 102 6692

    [14]

    Zhou T T, Liu Y, Zybin S V, Huang F L, Goddard III W A Equations of State for HMX Polymorphs and Molecular Conformation Transformations from ReaxFF-lg Molecular Dynamics. [to be published]

    [15]

    van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [16]

    van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard III W A 2005 J. Am. Chem. Soc. 127 11053

    [17]

    Nomura K I, Kalia R K, Nakano A, Vashishta P, van Duin A C T, Goddard III W A 2007 Phys. Rev. Lett. 99 148303

    [18]

    Zhang L Z, Zybin S V, van Duin A C T, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 113 10619

    [19]

    Strachan A, Kober E M, van Duin A C T, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502

    [20]

    Strachan A, van Duin A C T, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 098301

    [21]

    Zybin S V, Goddard III W A, Xu P, van Duin A C T, Thompson A P 2010 Appl. Phys. Lett. 96 081918

    [22]

    Budzien J, Thompson A P, Zybin S V 2009 J. Phys. Chem. B 113 13142

    [23]

    Liu L C, Liu Y, Zybin S V, Goddard III W A 2011 J. Phys. Chem. A 115 (40) 11016

    [24]

    Cobbledick R E, Small R W H 1974 Acta Cryst B 30 1918

    [25]

    Cady H H, Larson A C, Cromer D T 1963 Acta Cryst 16 617

    [26]

    Munday L B, Chung P W, Rice B M, Solares S D 2011 J. Phys. Chem. B 115 4378

    [27]

    Lin S T, Blanco M, Goddard III W A 2003 J. Chem. Phys. 119 11792

    [28]

    Li Y Y, Lin S T, Goddard III W A 2004 J. Am. Chem. Soc. 126 1872

    [29]

    Jang S S, Lin S T, Maiti P K, Blanco M, Goddard III W A, Shuler P, Tang Y C 2004 J. Phys. Chem. B 108 12130

    [30]

    Lin S T, Maiti P K, Goddard III W A 2005 J. Phys. Chem. B 109 8663

    [31]

    Lin S T, Maiti P K, Goddard III W A 2010 J. Phys. Chem. B 114 8191

    [32]

    Pascal T A, Abrol R, Mittal R, Wang Y, Prasadarao N V, Goddard III W A 2010 J. Biol. Chem. 285 37753

    [33]

    Smith G D, Bharadwaj R K 1999 J. Phys. Chem. B 103 3570

  • [1]

    Peiris S M, Piermarini G J 2008 Static Compression of Energetic Materails (Berlin: Springer-Verlag) p113-115

    [2]

    Cady H H, Smith L C 1962 Studies on the Polymorphs of HMX. Los Alamos Scientific Laboratory Report, LAMS-2652 TID-4500, Los Alamos National Laboratory, Los Alamos, NM, 1962

    [3]

    Goetz F, Brill T B, Ferraro J R 1978 J. Phys. Chem. 82 1912

    [4]

    Choi C S, Boutin H P 1970 Acta. Cryst. B 26 1235

    [5]

    Main P, Cobbledick R E, Small R W H 1985 Acta. Cryst. C41 1351

    [6]

    Saw C K 2002 Kinetics of HMX and Phase Transitions: Effects of Grain Size at Elevated Temperature. In 12th International Detonation Symposium, San Diego, CA, Aug 11-16, 2002

    [7]

    Herrmann M, Engel W, Eisenreich N 1993 Zeitschrift fr Kristallographie 204 121

    [8]

    Landers A G, Brill T B 1980 J. Phys. Chem. 84 3573

    [9]

    Yoo C S, Cynn H 1999 J. Chem. Phys. 111 10229

    [10]

    Gump J C, Peiris S M 2005 J. Appl. Phys. 97 053513

    [11]

    Cui H L, Ji G F, Chen X R, Zhang Q M, Wei D Q, Zhao F 2010 J. Chem. Eng. Data. 55 3121

    [12]

    Sewell T D 1998 J. Appl. Phys. 83 4142

    [13]

    Sorescu D C, Rice B M, Thompson D L 1998 J. Phys. Chem. B 102 6692

    [14]

    Zhou T T, Liu Y, Zybin S V, Huang F L, Goddard III W A Equations of State for HMX Polymorphs and Molecular Conformation Transformations from ReaxFF-lg Molecular Dynamics. [to be published]

    [15]

    van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [16]

    van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard III W A 2005 J. Am. Chem. Soc. 127 11053

    [17]

    Nomura K I, Kalia R K, Nakano A, Vashishta P, van Duin A C T, Goddard III W A 2007 Phys. Rev. Lett. 99 148303

    [18]

    Zhang L Z, Zybin S V, van Duin A C T, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 113 10619

    [19]

    Strachan A, Kober E M, van Duin A C T, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502

    [20]

    Strachan A, van Duin A C T, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 098301

    [21]

    Zybin S V, Goddard III W A, Xu P, van Duin A C T, Thompson A P 2010 Appl. Phys. Lett. 96 081918

    [22]

    Budzien J, Thompson A P, Zybin S V 2009 J. Phys. Chem. B 113 13142

    [23]

    Liu L C, Liu Y, Zybin S V, Goddard III W A 2011 J. Phys. Chem. A 115 (40) 11016

    [24]

    Cobbledick R E, Small R W H 1974 Acta Cryst B 30 1918

    [25]

    Cady H H, Larson A C, Cromer D T 1963 Acta Cryst 16 617

    [26]

    Munday L B, Chung P W, Rice B M, Solares S D 2011 J. Phys. Chem. B 115 4378

    [27]

    Lin S T, Blanco M, Goddard III W A 2003 J. Chem. Phys. 119 11792

    [28]

    Li Y Y, Lin S T, Goddard III W A 2004 J. Am. Chem. Soc. 126 1872

    [29]

    Jang S S, Lin S T, Maiti P K, Blanco M, Goddard III W A, Shuler P, Tang Y C 2004 J. Phys. Chem. B 108 12130

    [30]

    Lin S T, Maiti P K, Goddard III W A 2005 J. Phys. Chem. B 109 8663

    [31]

    Lin S T, Maiti P K, Goddard III W A 2010 J. Phys. Chem. B 114 8191

    [32]

    Pascal T A, Abrol R, Mittal R, Wang Y, Prasadarao N V, Goddard III W A 2010 J. Biol. Chem. 285 37753

    [33]

    Smith G D, Bharadwaj R K 1999 J. Phys. Chem. B 103 3570

  • [1] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [2] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [3] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [4] 王玲, 王河锦, 李婷. 锐钛矿金红石的高温原位X射线衍射研究. 物理学报, 2013, 62(14): 146402. doi: 10.7498/aps.62.146402
    [5] 马艳红, 仝小龙, 朱彬, 张大义, 洪杰. 金属橡胶热物理性能理论与试验研究. 物理学报, 2013, 62(4): 048101. doi: 10.7498/aps.62.048101
    [6] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [7] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [8] 刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信. 氧相变换热器内压力波动的混沌特性分析. 物理学报, 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [9] 袁焕丽, 袁保合, 李芳, 梁二军. ZrV2-xPxO7固溶体的相变与热膨胀性质的研究 . 物理学报, 2012, 61(22): 226502. doi: 10.7498/aps.61.226502
    [10] 闫冠云, 田强, 黄朝强, 顾小敏, 孙光爱, 陈波, 黄明, 聂福德, 柳义, 李秀宏. 热损伤奥克托金(HMX) 缺陷的X射线小角散射研究. 物理学报, 2012, 61(13): 136101. doi: 10.7498/aps.61.136101
    [11] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [12] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [13] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [14] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [16] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [17] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [18] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [19] 蒋中英, 郁伟中, 夏元复. 三嵌段共聚物SEBS中自由体积行为的温度及e+辐照时间依赖性的研究. 物理学报, 2005, 54(7): 3434-3438. doi: 10.7498/aps.54.3434
    [20] 李晓杰. 热膨胀型固体物态方程. 物理学报, 2002, 51(5): 1098-1102. doi: 10.7498/aps.51.1098
计量
  • 文章访问数:  5107
  • PDF下载量:  1169
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-07
  • 修回日期:  2012-07-05
  • 刊出日期:  2012-12-05

HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟

  • 1. 爆炸科学与技术国家重点实验室, 北京理工大学, 北京 100081
    基金项目: 国家自然科学基金重点项目(批准号: 10832003)资助的课题.

摘要: HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) 晶体不同晶型对温度的响应对于深入认识含能材料在外加载荷下的感度、稳定性、 相变等具有重要意义. 采用ReaxFF-lg势函数和等温等压分子动力学 (NPT-MD) 方法, 研究了-, -和-HMX三种固态晶型在T=303503 K内的晶体结构和分子结构. 结果表明, ReaxFF-lg势函数能够合理地描述HMX晶体的热膨胀行为, 计算得到的晶体结构和热膨胀系数与实验数据比较符合. 三种晶型的线膨胀系数表明, -HMX晶体具有明显的热膨胀各向异性; -HMX晶体c轴的热膨胀特性与a, b轴略有不同; -HMX晶体三个方向的热膨胀特性基本相同. 三种晶型的体膨胀系数为-HMX -HMX HMX, 表明-HMX晶体对温度最敏感, 这可能是-HMX晶体具有更高感度的原因. 在T=443 K时, HMX晶体的晶胞参数突变, 且部分分子构型由椅式转变为船式-椅式. 采用两相热力学模型 (2PT) 得到的亥姆赫兹自由能表明, HMX晶体在 T=423443 K时发生相变. , -和-HMX晶体分别在T=303423 K, T=443503 K和T=363423 K内稳定存在.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回